Interactive dual projections for gene expression analysis

  1. Ignacio Díaz 1
  2. José M. Enguita 1
  3. Diego García 1
  4. Ana González 1
  5. Abel A. Cuadrado 1
  6. María D. Chiara 2
  7. Nuria Valdés 3
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  2. 2 Institute of Sanitary Research of the Principado de Asturias, Hospital Universitario Central de Asturias
  3. 3 Department of Internal Medicine, Section of Endocrinology and Nutrition, Hospital Universitario de Cabueñes
Actas:
ESANN 2022 proceedings. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

Año de publicación: 2022

Congreso: European Symposium on Artificial Neural Networks, Computational Intelligence andMachine Learning (ESANN) (2022. Bruges, Belgium)

Tipo: Aportación congreso

DOI: 10.14428/ESANN/2022.ES2022-22 GOOGLE SCHOLAR

Resumen

We present an application of interactive dimensionality reduction(DR) for exploratory analysis of gene expression data that producestwo lively updated projections, a sample map and a gene map, by renderingintermediate results of a t-SNE. The user can condition the projections“on the fly” by subsets of genes or samples, so updated views reveal coexpressionpatterns for different cancer types or gene groups.

Información de financiación

This work is part of Grant PID2020-115401GB-I00 funded by MCIN/AEI/ 10.13039/501100011033. The results shown here are based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Financiadores

  • Ministerio de Ciencia e Innovación Spain
    • PID2020-115401GB-I00