Comparison of alumina ball size distribution in two white cement grinding units using Swebrec function

  1. Ismael Eduardo Rivera Madrid 1
  2. Marlon Rincón Fulla 2
  3. Adriana Marcela Osorio Correa 3
  4. Lina María Chica Osório 4
  5. Moisés Oswaldo Bustamante Rua 5
  6. Juan María Menéndez Aguado 6
  1. 1 Institución Universitaria Pascual Bravo. Colombia
  2. 2 Escuela de física. Universidad Nacional de Colombia
  3. 3 Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia.Colombia
  4. 4 Grupo GICI. Facultad de Ingenierías.Universidad de Medellín. Colombia
  5. 5 CIMEX. Facultad de Minas. Universidad Nacional de Colombia
  6. 6 Escuela Politécnica de Mieres. Universidad de Oviedo, Oviedo
Revista:
DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

ISSN: 0012-7353

Año de publicación: 2019

Volumen: 86

Número: 209

Páginas: 25-29

Tipo: Artículo

DOI: 10.15446/DYNA.V86N209.73970 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

Resumen

El presente artículo, muestra los resultados de la caracterización de la distribución del tamaño de bolas de alúmina en dos unidades de molienda de una planta industrial de cemento blanco. En la descarga de los molinos, las bolas fueron cribadas para establecer su distribución de tamaño. En ambas unidades, se compararon las bolas retenidas en la descarga con las existentes al comienzo del proceso, modelando dicha distribución con la función Swebrec. Los datos experimentales mostraron un buen ajuste con este modelo. Esta práctica es importante para establecer la carga correcta de bolas al comienzo de la operación y la recarga requerida en el estado estacionario

Referencias bibliográficas

  • Zhang, J., Bai, Y., Dong, H., Wu, Q. and Ye, X., Influence of ball size distribution on grinding effect in horizontal planetary ball mill. Advanced Powder Technology, 25(3), pp. 983-990, 2014. DOI: 10.1016/j.apt.2014.01.018
  • Razavi-Tousi, S.S. and Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technology, 284, pp. 149-158, 2015. DOI: 10.1016/j.powtec.2015.06.035
  • Kolacz, J., Measurement system of the mill charge in grinding ball mill circuits. Minerals Engineering, 10(12), pp 1329-1338, 1997. DOI: 10.1016/S0892-6875(97)00124-6
  • Menacho, J.M. and Concha, F., Mathematical model of ball wear in grinding mills II. General solution, Powder Technology, 52(3), pp. 267-277, 1987. DOI: 10.1016/0032-5910(87)80116-X
  • Menacho, J.M. and Concha, F., Mathematical model of ball wear in grinding mills I. Zero order wear rate. Powder Technology, 47(1), pp. 87-96, 1986. DOI: 10.1016/0032-5910(86)80013-4
  • Concha, F., Magne, L. and Austin, L.G., Optimization of the make-up ball charge in a grinding mill. International Journal of Minerals Processing, 34(3), pp. 231-241, 1992. DOI: 10.1016/0301-7516(92)90076-9
  • Herbst, J.A. and Fuerstenau, D.W., Scale-up procedures for continuous grinding mill design using population balance models. International Journal of Minerals Processing, 7(1), pp. 1-31, 1981. DOI: 10.1016/0301-7516(80)90034-4
  • Chimwani, N., Mulenga, F.K. and Hildebrandt, D., Ball size distribution for the maximum production of a narrowly-sized mill product. Powder Technology, 284, pp. 12-18, 2015. DOI: 10.1016/j.powtec.2015.06.037
  • Austin, L.G., Klimpe, R.R. and Luckie, P., Process engineering of size reduction: ball milling. New York: SME/AIME, 1984.
  • Katubilwa, F.M. and Moys, M.H., Effect of ball size distribution on milling rate. Minerals Engineering, 22(15), pp. 1283-1288, 2009. DOI: 10.1016/j.mineng.2009.07.008
  • Bwalya, M., Moys, M.H., Finnie, G.J. and Mulenga, F.K., Exploring ball size distribution in coal grinding mills. Powder Technology, 257, pp. 68-73, 2014. DOI: 10.1016/j.powtec.2014.02.044
  • Yildirim, K., Cho, H. and Austin L.G., The modeling of dry grinding of quartz in tumbling media mills. Powder Technology, 105(1-3), pp. 210-221, 1999. DOI: 10.1016/S0032-5910(99)00140-0
  • Rivera, I.E., Álvarez-Rodríguez, B., Bustamante, O., Restrepo-Baena, O.J. and Menéndez-Aguado, J.M., Ceramic ball wear prediction in tumbling mills as a grinding media selection tool. Powder Technology, 268, pp. 373-376, 2014. DOI: 10.1016/j.powtec.2014.08.056
  • Fruhstorfer, J., Schafföner, S. and Aneziris, C.G., Dry ball mixing and deagglomeration of alumina and zirconia composite fine powders using a bimodal ball size distribution. Ceramics International, 40(9 Part B), pp. 15293-15302, 2014. DOI: 10.1016/j.ceramint.2014.07.027
  • Shin, H., Lee, S., Jung, H.S. and Kim, J-B., Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceramics International, 39(8), pp. 8963-8968, 2013. DOI: 10.1016/j.ceramint.2013.04.093
  • Djamarani, K.M. and Clark, I.M., Characterization of particle size based on fine and coarse fractions. Powder Technology, 93(2), pp. 101-108, 1997. DOI: 10.1016/S0032-5910(97)03233-6
  • Rosin, P. and Rammler, E.. The laws governing the fineness of powdered coal. J. Inst. Fuel, 7, pp. 29-36, 1933.
  • Gates, A.O., Kick vs. Rittinger: an experimental investigation in rock crushing performed at Purdue University. Trans AIME, 52, pp. 875- 909, 1915.
  • Schumann, J., Principles of comminution I: size distribution and surface calculations. Trans. AIME, Tech. Publ. 1189, 1940.
  • Macías-García A., Cuerda-Correa, E.M, and Díaz-Díez, M.A. Application of the Rosin-Rammler and Gates-Gaudin-Schumann models to the particle size distribution analysis of agglomerated cork. Materials Characterization, 52(2), pp. 159- 164, 2004. DOI: 10.1016/j.matchar.2004.04.007
  • Ouchterlony, F., The Swebrec function: linking fragmentation by blasting and crushing. Journal Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A., 114(1), pp. 29-44, 2005. DOI: 10.1179/037178405X44539
  • Ouchterlony, F., Olsson, M., Nyberg, U., Andersson, P. and Gustavsson, L., Constructing the fragment size distribution of a bench blasting round, using the new Swebrec function. International Symposium of Rock Fragmentation by Blasting, 2006.
  • Osorio, A.M., Menéndez-Aguado, J.M., Bustamante, O. and Restrepo, G.M., Fine grinding size distribution analysis using the Swebrec function. Powder Technology, 258, pp. 206-208, 2014. DOI: 10.1016/j.powtec.2014.03.036
  • Menéndez-Aguado, J.M., Peña-Carpio, E. and Sierra, C., Particle size distribution fitting of surface detrital sediment using the Swebrec function. Journal of Soils and Sediments, 15(9), pp. 2004-2011, 2015. DOI: 10.1007/s11368-017-1689-1.