Comparison of alumina ball size distribution in two white cement grinding units using Swebrec function

  1. Ismael Eduardo Rivera Madrid 1
  2. Marlon Rincón Fulla 2
  3. Adriana Marcela Osorio Correa 3
  4. Lina María Chica Osório 4
  5. Moisés Oswaldo Bustamante Rua 5
  6. Juan María Menéndez Aguado 6
  1. 1 Institución Universitaria Pascual Bravo. Colombia
  2. 2 Escuela de física. Universidad Nacional de Colombia
  3. 3 Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia.Colombia
  4. 4 Grupo GICI. Facultad de Ingenierías.Universidad de Medellín. Colombia
  5. 5 CIMEX. Facultad de Minas. Universidad Nacional de Colombia
  6. 6 Escuela Politécnica de Mieres. Universidad de Oviedo, Oviedo
Aldizkaria:
DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

ISSN: 0012-7353

Argitalpen urtea: 2019

Alea: 86

Zenbakia: 209

Orrialdeak: 25-29

Mota: Artikulua

DOI: 10.15446/DYNA.V86N209.73970 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Beste argitalpen batzuk: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

Laburpena

The results of characterizing the alumina ball size distribution in two mills of a crushing and grinding plant are shown. The mills were unloaded and the ball charge was screened in order to establish the ball size distribution. For both mills, the balls retained during the unloading were compared to the balls retained at the beginning of the process, and additionally, they were compared to the results obtained by the Swebrec adjusted distribution model. In both cases, the experimental data have had a good fit with this model. This practice is important in order to establish the best ball charge at the beginning of the operation and the ball recharge in the steady state.

Erreferentzia bibliografikoak

  • Zhang, J., Bai, Y., Dong, H., Wu, Q. and Ye, X., Influence of ball size distribution on grinding effect in horizontal planetary ball mill. Advanced Powder Technology, 25(3), pp. 983-990, 2014. DOI: 10.1016/j.apt.2014.01.018
  • Razavi-Tousi, S.S. and Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technology, 284, pp. 149-158, 2015. DOI: 10.1016/j.powtec.2015.06.035
  • Kolacz, J., Measurement system of the mill charge in grinding ball mill circuits. Minerals Engineering, 10(12), pp 1329-1338, 1997. DOI: 10.1016/S0892-6875(97)00124-6
  • Menacho, J.M. and Concha, F., Mathematical model of ball wear in grinding mills II. General solution, Powder Technology, 52(3), pp. 267-277, 1987. DOI: 10.1016/0032-5910(87)80116-X
  • Menacho, J.M. and Concha, F., Mathematical model of ball wear in grinding mills I. Zero order wear rate. Powder Technology, 47(1), pp. 87-96, 1986. DOI: 10.1016/0032-5910(86)80013-4
  • Concha, F., Magne, L. and Austin, L.G., Optimization of the make-up ball charge in a grinding mill. International Journal of Minerals Processing, 34(3), pp. 231-241, 1992. DOI: 10.1016/0301-7516(92)90076-9
  • Herbst, J.A. and Fuerstenau, D.W., Scale-up procedures for continuous grinding mill design using population balance models. International Journal of Minerals Processing, 7(1), pp. 1-31, 1981. DOI: 10.1016/0301-7516(80)90034-4
  • Chimwani, N., Mulenga, F.K. and Hildebrandt, D., Ball size distribution for the maximum production of a narrowly-sized mill product. Powder Technology, 284, pp. 12-18, 2015. DOI: 10.1016/j.powtec.2015.06.037
  • Austin, L.G., Klimpe, R.R. and Luckie, P., Process engineering of size reduction: ball milling. New York: SME/AIME, 1984.
  • Katubilwa, F.M. and Moys, M.H., Effect of ball size distribution on milling rate. Minerals Engineering, 22(15), pp. 1283-1288, 2009. DOI: 10.1016/j.mineng.2009.07.008
  • Bwalya, M., Moys, M.H., Finnie, G.J. and Mulenga, F.K., Exploring ball size distribution in coal grinding mills. Powder Technology, 257, pp. 68-73, 2014. DOI: 10.1016/j.powtec.2014.02.044
  • Yildirim, K., Cho, H. and Austin L.G., The modeling of dry grinding of quartz in tumbling media mills. Powder Technology, 105(1-3), pp. 210-221, 1999. DOI: 10.1016/S0032-5910(99)00140-0
  • Rivera, I.E., Álvarez-Rodríguez, B., Bustamante, O., Restrepo-Baena, O.J. and Menéndez-Aguado, J.M., Ceramic ball wear prediction in tumbling mills as a grinding media selection tool. Powder Technology, 268, pp. 373-376, 2014. DOI: 10.1016/j.powtec.2014.08.056
  • Fruhstorfer, J., Schafföner, S. and Aneziris, C.G., Dry ball mixing and deagglomeration of alumina and zirconia composite fine powders using a bimodal ball size distribution. Ceramics International, 40(9 Part B), pp. 15293-15302, 2014. DOI: 10.1016/j.ceramint.2014.07.027
  • Shin, H., Lee, S., Jung, H.S. and Kim, J-B., Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceramics International, 39(8), pp. 8963-8968, 2013. DOI: 10.1016/j.ceramint.2013.04.093
  • Djamarani, K.M. and Clark, I.M., Characterization of particle size based on fine and coarse fractions. Powder Technology, 93(2), pp. 101-108, 1997. DOI: 10.1016/S0032-5910(97)03233-6
  • Rosin, P. and Rammler, E.. The laws governing the fineness of powdered coal. J. Inst. Fuel, 7, pp. 29-36, 1933.
  • Gates, A.O., Kick vs. Rittinger: an experimental investigation in rock crushing performed at Purdue University. Trans AIME, 52, pp. 875- 909, 1915.
  • Schumann, J., Principles of comminution I: size distribution and surface calculations. Trans. AIME, Tech. Publ. 1189, 1940.
  • Macías-García A., Cuerda-Correa, E.M, and Díaz-Díez, M.A. Application of the Rosin-Rammler and Gates-Gaudin-Schumann models to the particle size distribution analysis of agglomerated cork. Materials Characterization, 52(2), pp. 159- 164, 2004. DOI: 10.1016/j.matchar.2004.04.007
  • Ouchterlony, F., The Swebrec function: linking fragmentation by blasting and crushing. Journal Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A., 114(1), pp. 29-44, 2005. DOI: 10.1179/037178405X44539
  • Ouchterlony, F., Olsson, M., Nyberg, U., Andersson, P. and Gustavsson, L., Constructing the fragment size distribution of a bench blasting round, using the new Swebrec function. International Symposium of Rock Fragmentation by Blasting, 2006.
  • Osorio, A.M., Menéndez-Aguado, J.M., Bustamante, O. and Restrepo, G.M., Fine grinding size distribution analysis using the Swebrec function. Powder Technology, 258, pp. 206-208, 2014. DOI: 10.1016/j.powtec.2014.03.036
  • Menéndez-Aguado, J.M., Peña-Carpio, E. and Sierra, C., Particle size distribution fitting of surface detrital sediment using the Swebrec function. Journal of Soils and Sediments, 15(9), pp. 2004-2011, 2015. DOI: 10.1007/s11368-017-1689-1.