Mitigación mediante bacterias, hongos y organismos superiores de los impactos ambientales ocasionados por microplásticos en ecosistemas acuáticos

  1. Newrick, Bess Alicia 1
  2. Laca Pérez, Amanda 1
  3. Laca Pérez, Adriana 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Ingeniería del agua

ISSN: 1134-2196

Año de publicación: 2024

Volumen: 28

Número: 3

Páginas: 169-184

Tipo: Artículo

DOI: 10.4995/IA.2024.21599 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ingeniería del agua

Resumen

Debido a su durabilidad, versatilidad y bajo coste, los productos plásticos resultan fundamentales en la sociedad actual; sin embargo, estas mismas propiedades, responsables de su gran popularidad, también convierten a estos materiales en una amenaza medioambiental, provocando serios problemas entre los que destaca la liberación de microplásticos (MPs). Los MPs, definidos como partículas poliméricas con un tamaño inferior a 5 mm, son muy diversos en cuanto a composición, tamaño y forma, siendo capaces además de transportar sobre su superficie otros contaminantes y microorganismos, lo que incrementa los potenciales efectos adversos de estas micropartículas. Aunque los MPs se encuentran de manera ubicua en todo el planeta, su presencia es notoria en los ecosistemas acuáticos, especialmente los marinos, ya que las masas de agua naturales reciben la gran mayoría de los plásticos vertidos al medioambiente. Recientemente, la biorremediación ha sido propuesta como una interesante alternativa para luchar contra la creciente problemática derivada de la contaminación plástica; por ello, el objetivo de la presente revisión bibliográfica es analizar las posibles vías de eliminación de los MPs de origen fósil y no biodegradables en entornos acuáticos, mediante bacterias, hongos y organismos superiores, recopilando los últimos avances en este campo.

Referencias bibliográficas

  • Alshehrei, F. 2017. Biodegradation of Low Density Polyethylene by Fungi Isolated from Red Sea Water. International Journal of Current Microbiology and Applied Sciences, 6(8), 1703-1709, https://doi.org/10.20546/ijcmas.2017.608.204
  • Amobonye, A., Bhagwat, P., Singh, S., Pillai, S. 2021. Plastic biodegradation: Frontline microbes and their enzymes. Science of The Total Environment, 759, 143536, https://doi.org/10.1016/j.scitotenv.2020.143536
  • Anand, U., Dey, S., Bontempi, E., Ducoli, S., Vethaak, A. D., Dey, A., Federici, S. 2023. Biotechnological methods to remove microplastics: A review. Environmental Chemistry Letters, 21(3), 1787-1810, https://doi.org/10.1007/s10311-022-01552-4
  • Anderson, P. J., Warrack, S., Langen, V., Challis, J. K., Hanson, M. L., Rennie, M. D. 2017. Microplastic contamination in Lake Winnipeg, Canada. Environmental Pollution, 225, 223-231, https://doi.org/10.1016/j.envpol.2017.02.072
  • Andrady, A. L., Neal, M. A. 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984, https://doi.org/10.1098/rstb.2008.0304
  • Arossa, S., Martin, C., Rossbach, S., Duarte, C. M. 2019. Microplastic removal by Red Sea giant clam (Tridacna maxima). Environmental Pollution, 252, 1257-1266, https://doi.org/10.1016/j.envpol.2019.05.149
  • Au, S. Y., Bruce, T. F., Bridges, W. C., Klaine, S. J. 2015. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environmental Toxicology and Chemistry, 34(11), 2564-2572, https://doi.org/10.1002/etc.3093
  • Auta, H. S., Emenike, C. U., Fauziah, S. H. 2017. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution (Barking, Essex: 1987), 231(Pt 2), 1552-1559, https://doi.org/10.1016/j.envpol.2017.09.043
  • Auta, H. S., Emenike, C. U., Jayanthi, B., Fauziah, S. H. 2018. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. And Rhodococcus sp. Isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15-21, https://doi.org/10.1016/j.marpolbul.2017.11.036
  • Badola, N., Bahuguna, A., Sasson, Y., Chauhan, J. S. 2021. Microplastics removal strategies: A step toward finding the solution. Frontiers of Environmental Science & Engineering, 16(1), 7. https://doi.org/10.1007/s11783-021-1441-3
  • Balasubramanian, V., Natarajan, K., Hemambika, B., Ramesh, N., Sumathi, C. S., Kottaimuthu, R., Rajesh Kannan, V. 2010. Highdensity polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Letters in Applied Microbiology, 51(2), 205-211, https://doi.org/10.1111/j.1472-765X.2010.02883.x
  • Balasubramanian, V., Natarajan, K., Rajeshkannan, V., Perumal, P. 2014. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments. Environmental Science and Pollution Research, 21(21), 12549-12562, https://doi.org/10.1007/s11356-014-3191-2
  • Bhatt, P., Bhatt, K., Huang, Y., Li, J., Wu, S., Chen, S. 2023. Biofilm formation in xenobiotic-degrading microorganisms. Critical Reviews in Biotechnology, 43(8), 1129-1149, https://doi.org/10.1080/07388551.2022.2106417
  • Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R., Lewis, C. 2021. Oceanic Hitchhikers – Assessing Pathogen Risks from Marine Microplastic. Trends in Microbiology, 29(2), 107-116, https://doi.org/10.1016/j.tim.2020.06.011
  • Bulleri, F., Ravaglioli, C., Anselmi, S., Renzi, M. 2021. The sea cucumber Holothuria tubulosa does not reduce the size of microplastics but enhances their resuspension in the water column. Science of The Total Environment, 781, 146650, https://doi.org/10.1016/j.scitotenv.2021.146650
  • Calzadilla Cabrera, D. 2022. Evaluación de la eficiencia de los humedales artificiales de Carrícola (Valencia) y Urbanización “Los Monasterios” (Puçol, Valencia) para reducir la concentración de microplásticos en las aguas residuales urbanas. Universitat Politècnica de València, http://hdl.handle.net/10251/187906
  • Campanale, C., Massarelli, C., Savino, I., Locaputo, V., Uricchio, V. F. 2020. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. International Journal of Environmental Research and Public Health, 17(4), 1212, https://doi.org/10.3390/ijerph17041212
  • Campanale, C., Savino, I., Massarelli, C., Uricchio, V. F. 2023. Fourier Transform Infrared Spectroscopy to Assess the Degree of Alteration of Artificially Aged and Environmentally Weathered Microplastics. Polymers, 15(4), 911, https://doi.org/10.3390/polym15040911
  • Ciuffi, B., Fratini, E., Rosi, L. 2024. Plastic pretreatment: The key for efficient enzymatic and biodegradation processes. Polymer Degradation and Stability, 222, 110698, https://doi.org/10.1016/j.polymdegradstab.2024.110698
  • Dawson, A. L., Kawaguchi, S., King, C. K., Townsend, K. A., King, R., Huston, W. M., Bengtson Nash, S. M. 2018. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nature Communications, 9(1), Article 1, https://doi.org/10.1038/s41467-018-03465-9
  • De Jesus, R., Alkendi, R. 2023. A minireview on the bioremediative potential of microbial enzymes as solution to emerging microplastic pollution. Frontiers in Microbiology, 13, https://doi.org/10.3389/fmicb.2022.1066133
  • Debroy, A., George, N., Mukherjee, G. 2021. Role of Biofilms in degradation of microplastics in aquatic environments. Journal of Chemical Technology & Biotechnology, 97, https://doi.org/10.1002/jctb.6978
  • Edo, C., González-Pleiter, M., Tamayo-Belda, M., Ortega-Ojeda, F. E., Leganés, F., Fernández-Piñas, F., Rosal, R. 2020. Microplastics in sediments of artificially recharged lagoons: Case study in a Biosphere Reserve. Science of The Total Environment, 729, 138824, https://doi.org/10.1016/j.scitotenv.2020.138824
  • Esmaeili, A., Pourbabaee, A. A., Alikhani, H. A., Shabani, F., Esmaeili, E. 2013. Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil. PLoS ONE, 8(9), e71720, https://doi.org/10.1371/journal.pone.0071720
  • Forero-López, A. D., Brugnoni, L. I., Abasto, B., Rimondino, G. N., Lassalle, V. L., Ardusso, M. G., Nazzarro, M. S., Martinez, A. M., Spetter, C. V., Biancalana, F., Fernández-Severini. 2022. Plastisphere on microplastics: In situ assays in an estuarine environment. Journal of Hazardous Materials, 440, 129737, https://doi.org/10.1016/j.jhazmat.2022.129737
  • Giaganini, G., Cifelli, M., Biagini, D., Ghimenti, S., Corti, A., Castelvetro, V., Domenici, V., Lomonaco, T. 2023. Multi-Analytical Approach to Characterize the Degradation of Different Types of Microplastics: Identification and Quantification of Released Organic Compounds. Molecules, 28(3), 1382. https://doi.org/10.3390/molecules28031382
  • González-Menéndez, C., Sol, D., Laca, A., Laca, A., Díaz, M. 2024. Interrelation between extracellular polymer substances (EPSs) and MPs in an MBR. Journal of Environmental Chemical Engineering, 12(2), 112021, https://doi.org/10.1016/j.jece.2024.112021
  • González-Pleiter, M., Edo, C., Casero-Chamorro, M. C., Aguilera, Á., González-Toril, E., Wierzchos, J., Leganés, F., Fernández-Piñas, F., Rosal, R. 2020. Viable Microorganisms on Fibers Collected within and beyond the Planetary Boundary Layer. Environmental Science & Technology Letters, 7(11), 819-825, https://doi.org/10.1021/acs.estlett.0c00667
  • Goss, H., Jaskiel, J., Rotjan, R. 2018. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Marine Pollution Bulletin, 135, 1085-1089, https://doi.org/10.1016/j.marpolbul.2018.08.024
  • Harshvardhan, K., Jha, B. 2013. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77(1-2), 100-106, https://doi.org/10.1016/j.marpolbul.2013.10.025
  • He, Y., Rehman, A. U., Xu, M., Not, C. A., Ng, A. M. C., Djurišić, A. B. 2023. Photocatalytic degradation of different types of microplastics by TiOx/ZnO tetrapod photocatalysts. Heliyon, 9(11), e22562, https://doi.org/10.1016/j.heliyon.2023.e22562
  • Hernández-Arenas, R., Beltrán-Sanahuja, A., Navarro-Quirant, P., Sanz-Lazaro, C. 2021. The effect of sewage sludge containing microplastics on growth and fruit development of tomato plants. Environmental Pollution, 268, 115779, https://doi.org/10.1016/j.envpol.2020.115779
  • Huang, D., Tao, J., Cheng, M., Deng, R., Chen, S., Yin, L., Li, R. 2021. Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. Journal of Hazardous Materials, 407, 124399, https://doi.org/10.1016/j.jhazmat.2020.124399
  • Hu, X., Yu, Q., Gatheru, M., Ling, W., Qin, C., Wang, J. 2022. Microplastics-sorbed phenanthrene and its derivatives are highly bioaccessible and may induce human cancer risks. Environment International, 168, 107459, https://doi.org/10.1016/j.envint.2022.107459
  • Istomina, A., Chelomin, V., Mazur, A., Zhukovskaya, A., Karpenko, A., Mazur, M. 2024. Biodegradation of polyethylene in digestive gland homogenates of marine invertebrates. PeerJ, 12, e17041, https://doi.org/10.7717/peerj.17041
  • Jeon, H. J., Kim, M. N. 2015. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration & Biodegradation, 103, 141-146, https://doi.org/10.1016/j.ibiod.2015.04.024
  • Jia, L., Liu, L., Zhang, Y., Fu, W., Liu, X., Wang, Q., Tanveer, M., Huang, L. 2023. Microplastic stress in plants: Effects on plant growth and their remediations. Frontiers in Plant Science, 14, https://doi.org/10.3389/fpls.2023.1226484
  • Kesy, K., Oberbeckmann, S., Kreikemeyer, B., Labrenz, M. 2019. Spatial Environmental Heterogeneity Determines Young Biofilm Assemblages on Microplastics in Baltic Sea Mesocosms. Frontiers in Microbiology, 10, 1665, https://doi.org/10.3389/fmicb.2019.01665
  • Kooi, M., Koelmans, A. A. 2019. Simplifying Microplastic via Continuous Probability Distributions for Size, Shape, and Density. Environmental Science & Technology Letters, 6(9), 551-557, https://doi.org/10.1021/acs.estlett.9b00379
  • Krause, S., Molari, M., Gorb, E. V., Gorb, S. N., Kossel, E., Haeckel, M. 2020. Persistence of plastic debris and its colonization by bacterial communities after two decades on the abyssal seafloor. Scientific Reports, 9484, https://doi.org/10.1038/s41598-020-66361-7
  • Li, S., Yang, Y., Yang, S., Zheng, H., Zheng, Y., M, J., Nagarajan, D., Varjani, S., Chang, J.-S. 2023. Recent advances in biodegradation of emerging contaminants - microplastics (MPs): Feasibility, mechanism, and future prospects. Chemosphere, 331, 138776, https://doi.org/10.1016/j.chemosphere.2023.138776
  • Masiá, P., Sol, D., Ardura, A., Laca, A., Borrell, Y. J., Dopico, E., Laca, A., Machado-Schiaffino, G., Díaz, M., Garcia-Vazquez, E. 2020. Bioremediation as a promising strategy for microplastics removal in wastewater treatment plants. Marine Pollution Bulletin, 156, 111252, https://doi.org/10.1016/j.marpolbul.2020.111252
  • Martinho, S. D., Fernandes, V. C., Figueiredo, S. A., Delerue-Matos, C. 2022. Microplastic Pollution Focused on Sources, Distribution, Contaminant Interactions, Analytical Methods, and Wastewater Removal Strategies: A Review. International Journal of Environmental Research and Public Health, 19(9), 5610. https://doi.org/10.3390/ijerph19095610
  • Mat Yasin, N., Akkermans, S., Van Impe, J. F. M. 2022. Enhancing the biodegradation of (bio)plastic through pretreatments: A critical review. Waste Management, 150, 1-12, https://doi.org/10.1016/j.wasman.2022.06.004
  • Matavulj, M., Molitoris, H. 2009. Marine fungi: Degraders of poly-3-hydroxyalkanoate based plastic materials. Zbornik Matice Srpske Za Prirodne Nauke, 116, 253-265, https://doi.org/10.2298/ZMSPN0916253M
  • Melchor-Martínez, E., Macias-Garbett, R., Alvarado-Ramírez, L., Araújo, R., Sosa-Hernández, J., Ramírez-Gamboa, D., Parra-Arroyo, L., Alvarez, A., Monteverde, R., Cazares, K., Reyes-Mayer, A., Lino, M., Iqbal, H., Parra, R. 2022. Towards a Circular Economy of Plastics: An Evaluation of the Systematic Transition to a New Generation of Bioplastics. Polymers, 14, 1203, https://doi.org/10.3390/polym14061203
  • Miri, S., Saini, R., Davoodi, S. M., Pulicharla, R., Brar, S. K., Magdouli, S. 2022. Biodegradation of microplastics: Better late than never. Chemosphere, 286, 131670, https://doi.org/10.1016/j.chemosphere.2021.131670
  • Nasrabadi, A. E., Ramavandi, B., Bonyadi, Z. 2023. Recent progress in biodegradation of microplastics by Aspergillus sp. In aquatic environments. Colloid and Interface Science Communications, 57, 100754, https://doi.org/10.1016/j.colcom.2023.100754
  • Nkosi, M. S., Cuthbert, R. N., Wu, N., Shikwambana, P., Dalu, T. 2023. Microplastic abundance, distribution, and diversity in water and sediments along a subtropical river system. Environmental Science and Pollution Research, 30(39), 91440-91452, https://doi.org/10.1007/s11356-023-28842-w
  • Oliveira, M. M., Proenca, A. M., Moreira-Silva, E., de Castro, A. M., dos Santos, F. M., Marconatto, L., Medina-Silva, R. 2021. Biofilms of Pseudomonas and Lysinibacillus Marine Strains on High-Density Polyethylene. Microbial Ecology, 81(4), 833-846, https://doi.org/10.1007/s00248-020-01666-8
  • Othman, A. R., Hasan, H. A., Muhamad, M. H., Ismail, N. ’Izzati, Abdullah, S. R. S. 2021. Microbial degradation of microplastics by enzymatic processes: A review. Environmental Chemistry Letters, 19(4), 3057-3073, https://doi.org/10.1007/s10311-021-01197-9
  • Paço, A., Duarte, K., Da Costa, J., Santos, P., Pereira, R., Pereira, M. E., Freitas, A., Duarte, A., Rocha-Santos, T. 2017. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of The Total Environment, 586, 10-15, https://doi.org/10.1016/j.scitotenv.2017.02.017
  • Peng, L., Fu, D., Qi, H., Lan, C. Q., Yu, H., Ge, C. 2020. Micro- and nano-plastics in marine environment: Source, distribution and threats — A review. Science of The Total Environment, 698, 134254, https://doi.org/10.1016/j.scitotenv.2019.134254
  • Plastics – the fast Facts 2023 • Plastics Europe. (s. f.). Plastics Europe. Recuperado 27 de noviembre de 2023, de https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/
  • Pothiraj, C., Amutha Gokul, T., Ramesh Kumar, K., Ramasubramanian, A., Palanichamy, A., Venkatachalam, K., Pastorino, P., Barcelò, D., Balaji, P., Faggio, C. 2023. Vulnerability of microplastics on marine environment: A review. Ecological Indicators, 155, 111058, https://doi.org/10.1016/j.ecolind.2023.111058
  • Priyanka, N., Archana, T. 2011. Biodegradability of Polythene and Plastic By The Help of Microorganism: A Way for Brighter Future. Journal of Environmental & Analytical Toxicology, 01(02), https://doi.org/10.4172/2161-0525.1000111
  • R. Pramila. 2011. Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water– a SEM analysis. African Journal of Microbiology Research, 5(28), https://doi.org/10.5897/AJMR11.670
  • Rad, M. M., Moghimi, H., Azin, E., 2022. Biodegradation of thermo-oxidative pretreated low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics by Achromobacter denitrificans Ebl13. Marine Pollution Bulletin, 181, 113830, https://doi.org/10.1016/j.marpolbul.2022.113830
  • Rossatto, A., Arlindo, M. Z. F., de Morais, M. S., de Souza, T. D., Ogrodowski, C. S. 2023. Microplastics in aquatic systems: A review of occurrence, monitoring and potential environmental risks. Environmental Advances, 13, 100396, https://doi.org/10.1016/j.envadv.2023.100396
  • Sacco, N. A., Zoppas, F. M., Devard, A., González Muñoz, M. del P., García, G., Marchesini, F. A. 2023. Recent Advances in Microplastics Removal from Water with Special Attention Given to Photocatalytic Degradation: Review of Scientific Research. Microplastics, 2(3), Article 3, https://doi.org/10.3390/microplastics2030023
  • Sambolino, A., Iniguez, E., Herrera, I., Kaufmann, M., Dinis, A., Cordeiro, N. 2023. Microplastic ingestion and plastic additive detection in pelagic squid and fish: Implications for bioindicators and plastic tracers in open oceanic food webs. The Science of the Total Environment, 894, 164952, https://doi.org/10.1016/j.scitotenv.2023.164952
  • Sangale, M. K., Shahnawaz, M., Ade, A. B. 2019. Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Scientific Reports, 9(1), Article 1, https://doi.org/10.1038/s41598-019-41448-y
  • Sangeetha Devi, R., Rajesh Kannan, V., Nivas, D., Kannan, K., Chandru, S., Robert Antony, A. 2015. Biodegradation of HDPE by Aspergillus spp. From marine ecosystem of Gulf of Mannar, India. Marine Pollution Bulletin, 96(1-2), 32-40, https://doi.org/10.1016/j.marpolbul.2015.05.050
  • Scally, L., Gulan, M., Weigang, L., Culle, P. J., Milosavljevic, V. 2018, Significance of a non-thermal plasma treatment on LDPE biodegradation with Pseudomonas aeruginosa, Materials (Basel), 11, https://doi.org/10.3390/ma11101925
  • Shabbir, S., Faheem, M., Ali, N., Kerr, P. G., Wang, L.-F., Kuppusamy, S., Li, Y. 2020. Periphytic biofilm: An innovative approach for biodegradation of microplastics. Science of The Total Environment, 717, 137064, https://doi.org/10.1016/j.scitotenv.2020.137064
  • Sol, D., Laca, A., Laca, A., Díaz, M. 2020. Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science of The Total Environment, 740, 140016, https://doi.org/10.1016/j.scitotenv.2020.140016
  • Song, Y., Qiu, R., Hu, J., Li, X., Zhang, X., Chen, Y., Wu, W.-M., He, D. 2020. Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Science of The Total Environment, 746, 141289, https://doi.org/10.1016/j.scitotenv.2020.141289
  • Sutkar, P. R., Gadewar, R. D., Dhulap, V. P. 2023. Recent trends in degradation of microplastics in the environment: A state-of-theart review. Journal of Hazardous Materials Advances, 11, 100343, https://doi.org/10.1016/j.hazadv.2023.100343
  • Tursi, A., Baratta, M., Easton, T., Chatzisymeon, E., Chidichimo, F., De Biase, M., De Filpo, G. 2022. Microplastics in aquatic systems, a comprehensive review: Origination, accumulation, impact, and removal technologies. RSC Advances, 12(44), 28318-28340, https://doi.org/10.1039/D2RA04713F
  • Unuofin, J. O., Igwaran, A. 2023. Microplastics in seafood: Implications for food security, safety, and human health. Journal of Sea Research, 194, 102410, https://doi.org/10.1016/j.seares.2023.102410
  • Verdú, I., González-Pleiter, M., Leganés, F., Rosal, R., Fernández-Piñas, F. 2021. Microplastics can act as vector of the biocide triclosan exerting damage to freshwater microalgae. Chemosphere, 266, 129193, https://doi.org/10.1016/j.chemosphere.2020.129193
  • Viel, T., Manfra, L., Zupo, V., Libralato, G., Cocca, M., Costantini, M. 2023. Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches. Polymers, 15(12), 2673, https://doi.org/10.3390/polym15122673
  • Vilke, J. M., Fonseca, T. G., Alkimin, G. D., Gonçalves, J. M., Edo, C., Errico, G. d’, Seilitz, F. S., Rotander, A., Benedetti, M., Regoli, F., Lüchmann, K. H., Bebianno, M. J. 2024. Looking beyond the obvious: The ecotoxicological impact of the leachate from fishing nets and cables in the marine mussel Mytilus galloprovincialis. Journal of Hazardous Materials, 473, 134479, https://doi.org/10.1016/j.jhazmat.2024.134479
  • Vimala, P. P., Mathew, L. 2016. Biodegradation of Polyethylene Using Bacillus Subtilis. Procedia Technology, 24, 232-239., https://doi.org/10.1016/j.protcy.2016.05.031
  • Wang, F., Yu, Y., Wu, H., Wu, W., Wang, L., An, L., Cai, W. 2021. Microplastics in spotted seal cubs (Phoca largha): Digestion after ingestion? Science of The Total Environment, 785, 147426, https://doi.org/10.1016/j.scitotenv.2021.147426
  • Weston, J., Carrillo-barragan, P., Linley, T., Reid, W., Jamieson, A. 2020. New species of Eurythenes from hadal depths of the Mariana Trench, Pacific Ocean (Crustacea: Amphipod), Zootaxa, 4748, 163-181, https://doi.org/10.11646/zootaxa.4748.1.9.
  • Wu, Z., Shi, W., Valencak, T. G., Zhang, Y., Liu, G., Ren, D. 2023. Biodegradation of conventional plastics: Candidate organisms and potential mechanisms. Science of The Total Environment, 885, 163908, https://doi.org/10.1016/j.scitotenv.2023.163908
  • Xiang, P., Zhang, T., Wu, Q., Li, Q. 2023. Systematic Review of Degradation Processes for Microplastics: Progress and Prospects. Sustainability, 15(17), Article 17, https://doi.org/10.3390/su151712698
  • Yang, Y., Liu, W., Zhang, Z., Grossart, H.-P., Gadd, G. M. 2020. Microplastics provide new microbial niches in aquatic environments. Applied Microbiology and Biotechnology, 104(15), 6501-6511, https://doi.org/10.1007/s00253-020-10704-x
  • Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., Yu, F. 2020. Microbial degradation and other environmental aspects of microplastics/plastics. Science of The Total Environment, 715, 136968, https://doi.org/10.1016/j.scitotenv.2020.136968
  • Zeenat, Elahi, A., Bukhari, D. A., Shamim, S., Rehman, A. 2021. Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 33(6), 101538, https://doi.org/10.1016/j.jksus.2021.101538
  • Zeghal, E., Vaksmaa, A., Vielfaure, H., Boekhout, T., Niemann, H. 2021. The Potential Role of Marine Fungi in Plastic Degradation – A Review. Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.738877
  • Zhai, X., Zhang, X.-H., Yu, M. 2023. Microbial colonization and degradation of marine microplastics in the plastisphere: A review. Frontiers in Microbiology, 14, 1127308, https://doi.org/10.3389/fmicb.2023.1127308
  • Zhang, X., Zheng, M., Wang, L., Lou, Y., Shi, L., Jiang, S. 2018. Sorption of three synthetic musks by microplastics, Marine pollution Bulletin, 126, 606-609, https://doi.org/10.1016/j.mapolbul.2017.09.025
  • Zhang, J., Liu, Y., Liu, J., Shen, Y., Huang, H., Zhu, Y., Han, J., Lu, H. 2023. Removal of Phosphorus and Cadmium from Wastewaters by Periphytic Biofilm. Water, 15(18), Article 18, https://doi.org/10.3390/w15183314
  • Zhou, A., Zhang, Y., Xie, S., Chen, Y., Li, X., Wang, J., Zou, J. 2021. Microplastics and their potential effects on the aquaculture systems: A critical review. Reviews in Aquaculture, 13(1), 719-733, https://doi.org/10.1111/raq.12496