Analysis of Neural Networks Used by Artificial Intelligence in the Energy Transition with Renewable Energies

  1. Iglesias-Sanfeliz Cubero, Íñigo Manuel 2
  2. Meana-Fernández, Andrés 2
  3. Ríos-Fernández, Juan Carlos 2
  4. Ackermann, Thomas 1
  5. Gutiérrez-Trashorras, Antonio José 2
  1. 1 Department of Building Physics and Construction, University of Bielefeld, 32427 Minden, Germany
  2. 2 Department of Energy, University of Oviedo, 33203 Gijon, Spain
Revista:
Applied Sciences

ISSN: 2076-3417

Año de publicación: 2023

Volumen: 14

Número: 1

Páginas: 389

Tipo: Artículo

DOI: 10.3390/APP14010389 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Applied Sciences

Resumen

Artificial neural networks (ANNs) have become key methods for achieving global climate goals. The aim of this review is to carry out a detailed analysis of the applications of ANNs to the energy transition all over the world. Thus, the applications of ANNs to renewable energies such as solar, wind, and tidal energy or for the prediction of greenhouse gas emissions were studied. This review was conducted through keyword searches and research of publishers and research platforms such as Science Direct, Research Gate, Google Scholar, IEEE Xplore, Taylor and Francis, and MDPI. The dates of the most recent research were 2018 for wind energy, 2022 for solar energy, 2021 for tidal energy, and 2021 for the prediction of greenhouse gas emissions. The results obtained were classified according to the type of structure and the architecture used, the inputs/outputs used, the region studied, the activation function used, and the algorithms used as the main methods for synthesizing the results. To carry out the present review, 96 investigations were used, and among them, the predominant structure was that of the multilayer perceptron, with Purelin and Sigmoid as the most used activation functions.

Referencias bibliográficas

  • Youssef, (2017), Renew. Sustain. Energy Rev., 78, pp. 72, 10.1016/j.rser.2017.04.046
  • Jani, (2017), Renew. Sustain. Energy Rev., 80, pp. 352, 10.1016/j.rser.2017.05.169
  • McCulloch, (1943), Bull. Math. Biophys., 5, pp. 115, 10.1007/BF02478259
  • Hebb, (1949), Organ. Behav., 4, pp. 60
  • Miller, (2018), Am. J. Med., 131, pp. 129, 10.1016/j.amjmed.2017.10.035
  • Widrow, B., and Hoff, M.E. (1960). IRE WESCON Convention Record, Institute of Radio Engineers.
  • Widrow, B. (2022). Cybernetics 2.0: A General Theory of Adaptivity and Homeostasis in the Brain and in the Body, Springer International Publishing.
  • Minsky, M., and Papert, S. (1969). Perceptrons. An Introduction to Computational Geometry, The MIT Press Ltd.
  • Olazaran, (1993), Adv. Comput., 37, pp. 335, 10.1016/S0065-2458(08)60408-8
  • Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysts in the Behavioral Sciences. [Ph.D. Thesis, Harvard University].
  • Werbos, (1988), Neural Netw., 1, pp. 339, 10.1016/0893-6080(88)90007-X
  • Gholamalinezhad, H., and Khosravi, H. (2020). Pooling methods in deep neural networks, a review. arXiv.
  • Zhu, X., and Goldberg, A.B. (2022). Introduction to Semi-Supervised Learning, Springer Nature.
  • Matsuo, (2022), Neural Netw., 152, pp. 267, 10.1016/j.neunet.2022.03.037
  • (2019), Artif. Intell. Rev., 52, pp. 1267, 10.1007/s10462-018-9627-1
  • Dang, W., Guo, J., Liu, M., Liu, S., Yang, B., Yin, L., and Zheng, W. (2022). A Semi-Supervised Extreme Learning Machine Algorithm Based on the New Weighted Kernel for Machine Smell. Appl. Sci., 12.
  • Nguyen, (2022), Mach. Learn., 111, pp. 89, 10.1007/s10994-021-06003-9
  • Peirelinck, (2022), Energy AI, 7, pp. 100126, 10.1016/j.egyai.2021.100126
  • Wang, (2022), Multimed. Tools Appl., 81, pp. 41611, 10.1007/s11042-021-11007-7
  • Whang, (2023), VLDB J., 32, pp. 791, 10.1007/s00778-022-00775-9
  • Sze, (2017), Proc. IEEE, 105, pp. 2295, 10.1109/JPROC.2017.2761740
  • Roh, (2019), IEEE Trans. Knowl. Data Eng., 33, pp. 1328, 10.1109/TKDE.2019.2946162
  • Su, X., Zhao, Y., and Bethard, S. (2022, January 22–27). A comparison of strategies for source-free domain adaptation. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland.
  • Abiodun, (2018), Heliyon, 4, pp. e00938, 10.1016/j.heliyon.2018.e00938
  • Costa, (1997), Transp. Res. Part C Emerg. Technol., 5, pp. 301, 10.1016/S0968-090X(97)00017-X
  • Abdou, (2022), Neural Comput. Appl., 34, pp. 5791, 10.1007/s00521-022-06960-9
  • Le, (2011), Adv. Artif. Neural Syst., 2011, pp. 673016
  • Delgado, (2004), Appl. Econ., 36, pp. 627, 10.1080/0003684042000217661
  • Labidi, (2007), Chem. Eng. Process. Process Intensif., 46, pp. 314, 10.1016/j.cep.2006.06.011
  • Li, (2021), Renew. Sustain. Energy Rev., 138, pp. 110512, 10.1016/j.rser.2020.110512
  • Abarghouei, (2009), Int. J. Adv. Soft Comput. Its Appl., 1, pp. 162
  • Hamad, (2017), Transp. Res. Part D Transp. Environ., 53, pp. 161, 10.1016/j.trd.2017.04.014
  • Karabacak, (2014), Renew. Sustain. Energy Rev., 29, pp. 804, 10.1016/j.rser.2013.08.070
  • Rojas, R. (2013). Neural Networks: A Systematic Introduction, Springer Science Y Business Media.
  • Mohanraj, (2012), Renew. Sustain. Energy Rev., 16, pp. 1340, 10.1016/j.rser.2011.10.015
  • Yin, (2003), Simul. Model. Pract. Theory, 11, pp. 211, 10.1016/S1569-190X(03)00044-3
  • Yang, (2008), J. Heat Transf., 130, pp. 093001, 10.1115/1.2944238
  • Poznyak, T.I., Oria, I.C., and Poznyak, A.S. (2019). Ozonation and Biodegradation in Environmental Engineering, Elsevier.
  • Rosenblatt, (1958), Psychol. Rev., 65, pp. 386, 10.1037/h0042519
  • Poznyak, A.S., Sanchez, E.N., and Yu, W. (2001). Differential Neural Networks for Robust Nonlinear Control: Identification, State Estimation and Trajectory Tracking, World Scientific.
  • Hecht-Nielsen, R. (1992). Neural Networks for Perception, Academic Press.
  • Elsheikh, (2019), Sol. Energy, 180, pp. 622, 10.1016/j.solener.2019.01.037
  • Wang, (2015), Discret. Dyn. Nat. Soc., 2015, pp. 749181
  • Bhaskar, (2012), IEEE Trans. Sustain. Energy, 3, pp. 306, 10.1109/TSTE.2011.2182215
  • Tran, (2013), IEEE Trans. Ind. Electron., 61, pp. 2113, 10.1109/TIE.2013.2266084
  • Suykens, J., Vandewalle, J., and Moor, B. (1995). Artificial Neural Networks for Modelling and Control of Non-Linear Systems, Springer Science Y Business Media.
  • Karthigayani, (2014), J. Comput. Sci., 10, pp. 115, 10.3844/jcssp.2014.115.127
  • Buzhinsky, (2021), Mach. Learn., 112, pp. 3977, 10.1007/s10994-021-05994-9
  • Levy, N., and Katz, G. (2022, January 22–26). Roma: A method for neural network robustness measurement and assessment. Proceedings of the International Conference on Neural Information Processing, Virtual.
  • Kamel, (2022), Int. J. Sci. Res. Math. Stat. Sci., 9, pp. 5
  • Savva, A.G., Theocharides, T., and Nicopoulos, C. (2023). Robustness of Artificial Neural Networks Based on Weight Alterations Used for Prediction Purposes. Algorithms, 16.
  • Nishant, (2020), Int. J. Inf. Manag., 53, pp. 102104, 10.1016/j.ijinfomgt.2020.102104
  • Danish, (2023), Circ. Econ., 2, pp. 100040
  • Camilleri, M.A. (2023). Artificial intelligence governance: Ethical considerations and implications for social responsibility. Expert Syst., e13406.
  • Roberts, H., Zhang, J., Bariach, B., Cowls, J., Gilburt, B., Juneja, P., Tsamados, A., Ziosi, M., Taddeo, M., and Floridi, L. (2022). Artificial intelligence in support of the circular economy: Ethical considerations and a path forward. AI Soc., 1–14.
  • Crane, A., McWilliams, A., Matten, D., Moon, J., and Siegel, D.S. (2008). The Oxford Handbook of Corporate Social Responsibility, OUP Oxford.
  • Tai, (2020), Tzu Chi Med. J., 32, pp. 339, 10.4103/tcmj.tcmj_71_20
  • Wilson, (2018), Harv. Bus. Rev., 96, pp. 114
  • Eurostat (2023, December 27). Eurostat Statics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Wind_and_water_provide_most_renewable_electricity.3B_solar_is_the_fastest-growing_energy_source.
  • Noorollahi, (2016), Energy Convers. Manag., 115, pp. 17, 10.1016/j.enconman.2016.02.041
  • Mabel, (2008), Renew. Energy, 33, pp. 986, 10.1016/j.renene.2007.06.013
  • (2005), Renew. Energy, 30, pp. 227, 10.1016/j.renene.2004.05.008
  • Bilgili, (2007), Renew. Energy, 32, pp. 2350, 10.1016/j.renene.2006.12.001
  • Assareh, (2015), Renew. Sustain. Energy Rev., 51, pp. 1023, 10.1016/j.rser.2015.07.034
  • Mohandes, (2004), Renew. Energy, 29, pp. 939, 10.1016/j.renene.2003.11.009
  • Bigdeli, (2013), Renew. Sustain. Energy Rev., 27, pp. 20, 10.1016/j.rser.2013.06.022
  • Manobel, (2018), Renew. Energy, 125, pp. 1015, 10.1016/j.renene.2018.02.081
  • Li, (2010), Appl. Energy, 87, pp. 2313, 10.1016/j.apenergy.2009.12.013
  • Blonbou, (2011), Renew. Energy, 36, pp. 1118, 10.1016/j.renene.2010.08.026
  • Liu, (2010), Renew. Energy, 35, pp. 1857, 10.1016/j.renene.2009.12.011
  • Prieto, (2009), Renew. Energy, 34, pp. 1451, 10.1016/j.renene.2008.10.017
  • Cadenas, (2009), Renew. Energy, 34, pp. 274, 10.1016/j.renene.2008.03.014
  • Flores, (2005), Renew. Energy, 30, pp. 523, 10.1016/j.renene.2004.07.015
  • Monfared, (2009), Renew. Energy, 34, pp. 845, 10.1016/j.renene.2008.04.017
  • Grassi, (2010), Commun. Nonlinear Sci. Numer. Simul., 15, pp. 2262, 10.1016/j.cnsns.2009.10.005
  • Ramasamy, (2015), Renew. Energy, 80, pp. 338, 10.1016/j.renene.2015.02.034
  • Fadare, (2010), Appl. Energy, 87, pp. 934, 10.1016/j.apenergy.2009.09.005
  • Fonte, (2005), WSEAS Trans. Syst., 4, pp. 379
  • Kalogirou, S., Neocleous, C., Pashiardis, S., and Schizas, C. (1999, January 3–4). Wind speed prediction using artificial neural networks. Proceedings of the European Symposium on Intelligent Techniques, Crete, Greece.
  • (2006), Energy Convers. Manag., 47, pp. 395, 10.1016/j.enconman.2005.05.009
  • Ghorbani, (2013), Theor. Appl. Clim., 114, pp. 107, 10.1007/s00704-012-0821-9
  • Guo, (2011), Knowl.-Based Syst., 24, pp. 1048, 10.1016/j.knosys.2011.04.019
  • Lodge, A., and Yu, X. (2014, January 26–28). Short term wind speed prediction using artificial neural networks. Proceedings of the 4th IEEE International Conference on Information Science and Technology, Shenzhen, China.
  • Le, X.C., Duong, M.Q., and Le, K.H. (2022). Review of the Modern Maximum Power Tracking Algorithms for Permanent Magnet Synchronous Generator of Wind Power Conversion Systems. Energies, 16.
  • Mellit, (2009), Renew. Sustain. Energy Rev., 13, pp. 406, 10.1016/j.rser.2008.01.006
  • Mellit, (2008), Prog. Energy Combust. Sci., 34, pp. 574, 10.1016/j.pecs.2008.01.001
  • Ghritlahre, (2018), Renew. Sustain. Energy Rev., 84, pp. 75, 10.1016/j.rser.2018.01.001
  • Yadav, (2014), Renew. Sustain. Energy Rev., 33, pp. 772, 10.1016/j.rser.2013.08.055
  • Chen, (2011), Sol. Energy, 85, pp. 2856, 10.1016/j.solener.2011.08.027
  • Almonacid, (2009), Renew. Energy, 34, pp. 2743, 10.1016/j.renene.2009.05.020
  • Voyant, (2011), Energy, 36, pp. 348, 10.1016/j.energy.2010.10.032
  • Paoli, (2010), Sol. Energy, 84, pp. 2146, 10.1016/j.solener.2010.08.011
  • Mellit, (2010), Sol. Energy, 84, pp. 807, 10.1016/j.solener.2010.02.006
  • Benghanem, (2010), Energy, 35, pp. 3751, 10.1016/j.energy.2010.05.024
  • Kanit, (2004), Appl. Energy, 77, pp. 273, 10.1016/S0306-2619(03)00137-5
  • Ouammi, (2012), Renew. Sustain. Energy Rev., 16, pp. 4876, 10.1016/j.rser.2012.03.071
  • Rehman, (2009), Energy Sources Part A Recovery Util. Environ. Eff., 31, pp. 974
  • Koca, (2011), Expert Syst. Appl., 38, pp. 8756, 10.1016/j.eswa.2011.01.085
  • Fadare, (2009), Appl. Energy, 86, pp. 1410, 10.1016/j.apenergy.2008.12.005
  • Khatib, (2012), Int. J. Photoenergy, 2012, pp. 419504
  • Yadav, (2012), Int. J. Comput. Appl., 50, pp. 1
  • Elminir, (2007), Energy, 32, pp. 1513, 10.1016/j.energy.2006.10.010
  • Hontoria, (2005), Sol. Energy, 79, pp. 523, 10.1016/j.solener.2004.11.013
  • Elminir, (2005), Sol. Energy, 79, pp. 270, 10.1016/j.solener.2004.11.006
  • Tymvios, (2005), Sol. Energy, 78, pp. 752, 10.1016/j.solener.2004.09.007
  • Alam, (2006), Renew. Energy, 31, pp. 1483, 10.1016/j.renene.2005.07.010
  • Jiang, (2008), Energy Policy, 36, pp. 3833, 10.1016/j.enpol.2008.06.030
  • Mubiru, (2008), Sol. Energy, 82, pp. 181, 10.1016/j.solener.2007.06.003
  • Kuleli, (2009), Appl. Energy, 86, pp. 1222, 10.1016/j.apenergy.2008.06.003
  • (2010), Energy, 35, pp. 4795, 10.1016/j.energy.2010.09.009
  • Azadeh, (2009), Energy Convers. Manag., 50, pp. 1497, 10.1016/j.enconman.2009.02.019
  • (2005), Appl. Energy, 80, pp. 35, 10.1016/j.apenergy.2004.02.003
  • Rahimikhoob, (2010), Renew. Energy, 35, pp. 2131, 10.1016/j.renene.2010.01.029
  • Hasni, (2012), Energy Procedia, 18, pp. 531, 10.1016/j.egypro.2012.05.064
  • Rumbayan, (2012), Renew. Sustain. Energy Rev., 16, pp. 1437, 10.1016/j.rser.2011.11.024
  • Rehman, (2012), Energy Sources Part A Recover. Util. Environ. Eff., 34, pp. 1326
  • (1998), Renew. Energy, 14, pp. 199, 10.1016/S0960-1481(98)00068-8
  • Makarynskyy, (2005), Comput. Geosci., 31, pp. 415, 10.1016/j.cageo.2004.10.005
  • Londhe, (2006), J. Atmos. Ocean. Technol., 23, pp. 1593, 10.1175/JTECH1932.1
  • Deo, (2003), Ocean Eng., 30, pp. 1163, 10.1016/S0029-8018(02)00086-0
  • Makarynskyy, (2004), Ocean Eng., 31, pp. 709, 10.1016/j.oceaneng.2003.05.003
  • Hadadpour, (2014), Proceeding Inst. Civ. Eng.-Marit. Eng., 167, pp. 42
  • Deo, (2001), Ocean Eng., 28, pp. 889, 10.1016/S0029-8018(00)00027-5
  • Bento, (2021), Ocean Eng., 219, pp. 108372, 10.1016/j.oceaneng.2020.108372
  • Feng, (2020), Ocean Eng., 211, pp. 107526, 10.1016/j.oceaneng.2020.107526
  • Agrawal, (2004), Mar. Struct., 17, pp. 536, 10.1016/j.marstruc.2005.01.001
  • Kamranzad, (2011), Ocean Eng., 38, pp. 248, 10.1016/j.oceaneng.2010.10.004
  • Castro, (2014), Appl. Soft Comput., 23, pp. 194, 10.1016/j.asoc.2014.06.031
  • Malekmohamadi, (2011), Ocean Eng., 38, pp. 487, 10.1016/j.oceaneng.2010.11.020
  • Rodrigues, (2018), Renew. Energy, 115, pp. 1055, 10.1016/j.renene.2017.09.032
  • Avila, (2020), Appl. Ocean Res., 101, pp. 102189, 10.1016/j.apor.2020.102189
  • Jain, (2007), Appl. Ocean Res., 29, pp. 72, 10.1016/j.apor.2007.05.003
  • Kalra, (2005), Mar. Struct., 18, pp. 289, 10.1016/j.marstruc.2005.09.003
  • Tsai, (2002), Ocean. Eng., 29, pp. 1683, 10.1016/S0029-8018(01)00112-3
  • Agrawal, (2002), Mar. Struct., 15, pp. 57, 10.1016/S0951-8339(01)00014-4
  • Londhe, (2016), Appl. Ocean. Res., 59, pp. 483, 10.1016/j.apor.2016.07.004
  • Mahjoobi, (2008), Appl. Ocean Res., 30, pp. 28, 10.1016/j.apor.2008.03.002
  • Mahjoobi, (2009), Ocean Eng., 36, pp. 1175, 10.1016/j.oceaneng.2009.08.008
  • Lin, (2023), Carbon Balance Manag., 18, pp. 9, 10.1186/s13021-023-00229-x
  • Pocajt, (2014), Int. J. Greenh. Gas Control, 20, pp. 244, 10.1016/j.ijggc.2013.11.011
  • Khoshnevisan, (2014), Agric. Syst., 123, pp. 120, 10.1016/j.agsy.2013.10.003
  • Yi, (1996), Environ. Pollut., 92, pp. 349, 10.1016/0269-7491(95)00078-X
  • Gardner, (1999), Atmos. Environ., 33, pp. 2627, 10.1016/S1352-2310(98)00230-1
  • Jorquera, (1998), Atmos. Environ., 32, pp. 3415, 10.1016/S1352-2310(98)00035-1
  • Andretta, (2000), Neural Comput. Appl., 9, pp. 93, 10.1007/s005210070020
  • Chelani, (2002), Environ. Model. Softw., 17, pp. 159, 10.1016/S1364-8152(01)00061-5
  • Madariaga, (2006), Environ. Model. Softw., 21, pp. 430, 10.1016/j.envsoft.2004.07.008
  • Elkamel, (2001), Adv. Environ. Res., 5, pp. 47, 10.1016/S1093-0191(00)00042-3
  • Pocajt, (2013), Sci. Total Environ., 443, pp. 511, 10.1016/j.scitotenv.2012.10.110
  • Hooyberghs, (2005), Atmos. Environ., 39, pp. 3279, 10.1016/j.atmosenv.2005.01.050
  • Wang, (2020), Energy, 198, pp. 117286, 10.1016/j.energy.2020.117286
  • Babu, (2020), Appl. Energy, 263, pp. 114612, 10.1016/j.apenergy.2020.114612
  • (2005), Appl. Energy, 80, pp. 11, 10.1016/j.apenergy.2004.03.004
  • Najafi, (2009), Appl. Energy, 86, pp. 630, 10.1016/j.apenergy.2008.09.017
  • Sayin, (2007), Appl. Therm. Eng., 27, pp. 46, 10.1016/j.applthermaleng.2006.05.016
  • Shivakumar, (2011), Appl. Energy, 88, pp. 2344, 10.1016/j.apenergy.2010.12.030
  • Mohammadhassani, (2015), Appl. Soft Comput., 34, pp. 139, 10.1016/j.asoc.2015.04.059
  • Bevilacqua, V., Intini, F., and Kühtz, S. (2008, January 22–25). A model of artificial neural network for the analysis of climate change. Proceedings of the 28th International Symposium on Forecasting, Nice, France.
  • Bakay, (2021), J. Clean. Prod., 285, pp. 125324, 10.1016/j.jclepro.2020.125324
  • Gallo, (2014), AGRIS-Line Pap. Econ. Inform., 6, pp. 31
  • Abbasi, T., Luithui, C., and Abbasi, S.A. (2020). A Model to Forecast Methane Emissions from Tropical and Subtropical Reservoirs on the Basis of Artificial Neural Networks. Water, 12.
  • Heo, (2004), Sci. Total Environ., 325, pp. 221, 10.1016/j.scitotenv.2003.11.009
  • Cai, (2009), Transp. Res. Part D Transp. Environ., 14, pp. 32, 10.1016/j.trd.2008.10.004
  • Azeez, O.S., Pradhan, B., Shafri, H.Z.M., Shukla, N., Lee, C.-W., and Rizeei, H.M. (2019). Modeling of CO Emissions from Traffic Vehicles Using Artificial Neural Networks. Appl. Sci., 9.
  • Ahmadi, (2019), Energy Sources Part A Recover. Util. Environ. Eff., 45, pp. 9513
  • Rafiee, (2016), J. Clean. Prod., 133, pp. 924, 10.1016/j.jclepro.2016.05.188
  • Fang, (2018), J. Clean. Prod., 173, pp. 143, 10.1016/j.jclepro.2017.05.102
  • Pocajt, (2017), Air Qual. Atmos. Health, 10, pp. 15, 10.1007/s11869-016-0403-6
  • Lee, (2004), Appl. Energy, 77, pp. 153, 10.1016/S0306-2619(03)00107-7
  • Koziel, (2013), Int. J. Numer. Model. Electron. Netw. Devices Fields, 26, pp. 493, 10.1002/jnm.1885