Pluralism and complexity without integration? A critical appraisal of Mitchell’s integrative pluralism

  1. Deulofeu, Roger 1
  2. Suárez, Javier 2
  1. 1 Universitat Autònoma de Barcelona
    info

    Universitat Autònoma de Barcelona

    Barcelona, España

    ROR https://ror.org/052g8jq94

  2. 2 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Theoria: an international journal for theory, history and foundations of science

ISSN: 0495-4548

Año de publicación: 2023

Título del ejemplar: Sandra Mitchell’s Lullius Lectures. Sandra Mitchell’s contribution to philosophy of science

Volumen: 38

Número: 3

Páginas: 299-317

Tipo: Artículo

DOI: 10.1387/THEORIA.23871 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Theoria: an international journal for theory, history and foundations of science

Resumen

Este artículo examina de manera crítica la noción de pluralismo integrativo de Sandra Mitchell. Según el pluralismo integrativo, las explicaciones científicas deben integrar descripciones de diferentes niveles ontológicos para ser científicamente sólidas. En este artículo argumentamos que, si bien el pluralismo integrador es una estrategia fundamental de la ciencia contemporánea, existen razones específicas por las cuales no se debe esperar que la integración en el sentido articulado por Mitchell sea la estrategia óptima y aquella a la que los científicos deban apuntar siempre. Utilizando ejemplos de la biología contemporánea, argumentamos que la integración a veces no es ni epistémicamente deseable ni ontológicamente alcanzable. Concluimos que el pluralismo integrador debería limitarse a una clase específica de sistemas complejos, pero no puede generalizarse como la estrategia de investigación preferible sin obtener más información sobre las prácticas epistémicas de la comunidad científica o la ontología del sistema bajo investigación.

Referencias bibliográficas

  • American Psychiatric Association. (2000). Diagnostic and statistical Manual of Mental Disorders, 4th edition. American Psychiatric Association.
  • Batterman, R. W., & Green, S. (2021). Steel and bone: mesoscale modeling and middle-out strategies in physics and biology. Synthese, 199(1), 1159-1184.
  • Bechtel, W., & Richardson, R. C. (1997). Discovering complexity: Decomposition and localization as strategies in scientific research. Cambridge, Mass.: MIT Press.
  • Brigandt, I., Green, S., & O’Malley, M. A. (2017). Systems biology and mechanistic explanation. In S. Glennan & P. Illari (eds.), The Routledge handbook of mechanisms and mechanical philosophy (pp. 362-374). New York: Routledge.
  • Brigandt, I. (2010). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis, 73(3), 295-311.
  • Brigandt, I. (2013). Systems biology and the integration of mechanistic explanation and mathematical explanation. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 477-492.
  • Carusi, A., Burrage, K., & Rodríguez, B. (2012). Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology. American Journal of Physiology-Heart and Circulatory Physiology, 303(2), H144-H155.
  • Deulofeu, R., Suárez, J., & Pérez-Cervera, A. (2021). Explaining the behaviour of random ecological networks: The stability of the microbiome as a case of integrative pluralism. Synthese, 198(3), 2003-2025.
  • Díez, J. (2014). Scientific w-explanation as ampliative, specialised embedding: a neo-hempelian account. Erkenntnis, 79, 1413-1443.
  • Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, Mass.: Harvard University Press.
  • Emmeche, C., Køppe, S., & Stjernfelt, F. (2000). Levels, Emergence, and Three Versions of Downward Causation. In P. B. Andersen, C. Emmeche, N.O. Finnemann, & P.V. Christiansen (eds.), Downward Causation: Minds, Bodies and Matter (pp. 13-34). Aarhus: Aarhus University Press.
  • Fagan, M. B. (2012). The joint account of mechanistic explanation. Philosophy of Science, 79(4), 448-472.
  • Fagan, M. B. (2016). Stem cells and systems models: Clashing views of explanation. Synthese, 193(3), 873-907. Glennan, S. & P. Illari (eds.), The Routledge handbook of mechanisms and mechanical philosophy. New York:
  • Routledge. Green, S., & Batterman, R. W. (2021). Making sense of top-down causation: Universality and functional equivalence in physics and biology. In J. Voosholz, & M. Gabriel (eds.), Top-down causation and emergence (pp. 39-63). Cham: Springer.
  • Green, S. (2018). Scale dependency and downward causation in biology. Philosophy of Science, 85(5), 998-1011.
  • Green, S, (2022). Philosophy of Systems and Synthetic Biology. The Stanford Encyclopedia of Philosophy (Summer 2022 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/ sum2022/entries/systems-synthetic-biology/>. Accessed 25th of April 2023.
  • Hariri, A. R., Drabant, E.M., Munoz, K.E., Kolachana, B.S., Mattay, V.S., Egan, M. F., & Weinberger, D. R. (2005). A Susceptibility Gene for Affective Disorders and the Response of the Human Amygdala. Archives of General Psychiatry, 62, 146-152.
  • Hempel, C. G. (1965). Aspects of scientific explanation (Vol. 1). New York: Free Press. Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177(2), 213- 245.
  • Issad, T., & Malaterre, C. (2015). Are dynamic mechanistic explanations still mechanistic?. In P. A. Braillard & C. Malaterre (eds.), Explanation in biology: An enquiry into the diversity of explanatory patterns in the life sciences (pp. 265-292). Dordrecht: Springer.
  • Kendler, K. S., Gardner, C.O. & Prescott, C.A. (2006). Toward a Comprehensive Developmental Model for Major Depression in Men. American Journal of Psychiatry, 163, 115-124.
  • Kendler, K. S., Kuhn, J.W., Vittum, J., Prescott, C.A., & Riley, B. (2005). The Interaction of Stressful Life Events and a Serotonin Transporter Polymorphism in the Prediction of Episodes of Major Depression: A Replication. Archives of General Psychiatry 62, 529-535.
  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science 67(1), 1-25.
  • Mitchell, S. D., & Dietrich, M. R. (2006). Integration without unification: An argument for pluralism in the biological science. The American naturalist, 168(S6), S73-S79.
  • Mitchell, S. D., & Gronenborn, A. M. (2017). After fifty years, why are protein X-ray crystallographers still in business? The British Journal for the Philosophy of Science, 68(3), 703-723.
  • Mitchell, S. D. (1997). Pragmatic laws. Philosophy of Science, 64, S468-S479.
  • Mitchell, S. D. (2000). Dimensions of scientific laws. Philosophy of Science, 67(2), 242-265.
  • Mitchell, S. D. (2002). Integrative pluralism. Biology and Philosophy, 17(1), 55-70.
  • Mitchell, S. D. (2003). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.
  • Mitchell, S. D. (2008). Explaining complex behavior. In K. S. Kendler & J. Parnas (eds.), Philosophical issues in psychiatry: Explanation, phenomenology, and nosology (pp. 19-47). Baltimore: Johns Hopkins University Press.
  • Mitchell, S. D. (2009). Unsimple truths: Science, complexity, and policy. Chicago: University of Chicago Press.
  • Mitchell, S. D. (2012). Emergence: logical, functional and dynamical. Synthese, 185(2), 171-186.
  • Mitchell, S. D. (2020). Perspective, Representation and Integration. In M. Massimi & C. D. McCoy (eds.), Understanding Perspectivism: Scientific challenges and methodological prospects (pp. 178-193). New York: Routledge.
  • Moreno, A., & Suárez, J. (2020). Plurality of explanatory strategies in biology: Mechanisms and networks. In W.J. Gonzalez (ed.), Methodological Prospects for Scientific Research (pp. 141-165). Cham: Springer.
  • Sherman, P. W. (1988). The levels of analysis. Animal Behaviour, 36(2), 616-619.
  • Stoneham, A. M., & Harding, J. H. (2003). Not too big, not too small: The appropriate scale. Nature Materials, 2(2), 77.
  • Suárez, J., & Triviño, V. (2019). A metaphysical approach to holobiont individuality: Holobionts as emergent individuals. Quaderns de Filosofía, 6(1), 59-76.
  • Suárez, J. (under review). Scrutinizing microbiome determinism.
  • Triviño, V., & Suárez, J. (2020). Holobionts: Ecological communities, hybrids, or biological individuals? A metaphysical perspective on multispecies systems. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 84, 101323.
  • Wilson, M. (2012). What is classical mechanics anyway? In R. Batterman (ed.), Oxford handbook of philosophy of physics (pp. 43-106). Oxford; New York: Oxford University Press.
  • Winther, R. G. (2006). Parts and theories in compositional biology. Biology and Philosophy, 21, 471-499.
  • Woodward, J., & Ross, L. (2021). Scientific Explanation, The Stanford Encyclopedia of Philosophy (Summer  2021 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/sum2021/ entries/scientific-explanation/>. Accessed 25th of April 2023.