Pluralism and complexity without integration? A critical appraisal of Mitchell’s integrative pluralism

  1. Deulofeu, Roger 1
  2. Suárez, Javier 2
  1. 1 Universitat Autònoma de Barcelona
    info

    Universitat Autònoma de Barcelona

    Barcelona, España

    ROR https://ror.org/052g8jq94

  2. 2 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Journal:
Theoria: an international journal for theory, history and foundations of science

ISSN: 0495-4548

Year of publication: 2023

Issue Title: Sandra Mitchell’s Lullius Lectures. Sandra Mitchell’s contribution to philosophy of science

Volume: 38

Issue: 3

Pages: 299-317

Type: Article

DOI: 10.1387/THEORIA.23871 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Theoria: an international journal for theory, history and foundations of science

Sustainable development goals

Abstract

This paper critically examines Mitchell’s integrative pluralism. Integrative pluralism is the view that scientific explanations should primarily aim to integrate descriptions from different ontological levels. We contend that, while integrative pluralism is a fundamental strategy in contemporary science, there are specific reasons why one should not expect integration in the sense developed by Mitchell to be the optimal strategy and the one that scientists should always aim for. Drawing on some examples from contemporary biology, we argue that integration is sometimes neither epistemically desirable, nor ontologically achievable. We conclude that integrative pluralism should thus be limited to a specific class of complex systems but cannot be generalised as the preferable research strategy without further information about the epistemic practices of the scientific community or the ontology of the system under investigation.

Bibliographic References

  • American Psychiatric Association. (2000). Diagnostic and statistical Manual of Mental Disorders, 4th edition. American Psychiatric Association.
  • Batterman, R. W., & Green, S. (2021). Steel and bone: mesoscale modeling and middle-out strategies in physics and biology. Synthese, 199(1), 1159-1184.
  • Bechtel, W., & Richardson, R. C. (1997). Discovering complexity: Decomposition and localization as strategies in scientific research. Cambridge, Mass.: MIT Press.
  • Brigandt, I., Green, S., & O’Malley, M. A. (2017). Systems biology and mechanistic explanation. In S. Glennan & P. Illari (eds.), The Routledge handbook of mechanisms and mechanical philosophy (pp. 362-374). New York: Routledge.
  • Brigandt, I. (2010). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis, 73(3), 295-311.
  • Brigandt, I. (2013). Systems biology and the integration of mechanistic explanation and mathematical explanation. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 477-492.
  • Carusi, A., Burrage, K., & Rodríguez, B. (2012). Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology. American Journal of Physiology-Heart and Circulatory Physiology, 303(2), H144-H155.
  • Deulofeu, R., Suárez, J., & Pérez-Cervera, A. (2021). Explaining the behaviour of random ecological networks: The stability of the microbiome as a case of integrative pluralism. Synthese, 198(3), 2003-2025.
  • Díez, J. (2014). Scientific w-explanation as ampliative, specialised embedding: a neo-hempelian account. Erkenntnis, 79, 1413-1443.
  • Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, Mass.: Harvard University Press.
  • Emmeche, C., Køppe, S., & Stjernfelt, F. (2000). Levels, Emergence, and Three Versions of Downward Causation. In P. B. Andersen, C. Emmeche, N.O. Finnemann, & P.V. Christiansen (eds.), Downward Causation: Minds, Bodies and Matter (pp. 13-34). Aarhus: Aarhus University Press.
  • Fagan, M. B. (2012). The joint account of mechanistic explanation. Philosophy of Science, 79(4), 448-472.
  • Fagan, M. B. (2016). Stem cells and systems models: Clashing views of explanation. Synthese, 193(3), 873-907. Glennan, S. & P. Illari (eds.), The Routledge handbook of mechanisms and mechanical philosophy. New York:
  • Routledge. Green, S., & Batterman, R. W. (2021). Making sense of top-down causation: Universality and functional equivalence in physics and biology. In J. Voosholz, & M. Gabriel (eds.), Top-down causation and emergence (pp. 39-63). Cham: Springer.
  • Green, S. (2018). Scale dependency and downward causation in biology. Philosophy of Science, 85(5), 998-1011.
  • Green, S, (2022). Philosophy of Systems and Synthetic Biology. The Stanford Encyclopedia of Philosophy (Summer 2022 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/ sum2022/entries/systems-synthetic-biology/>. Accessed 25th of April 2023.
  • Hariri, A. R., Drabant, E.M., Munoz, K.E., Kolachana, B.S., Mattay, V.S., Egan, M. F., & Weinberger, D. R. (2005). A Susceptibility Gene for Affective Disorders and the Response of the Human Amygdala. Archives of General Psychiatry, 62, 146-152.
  • Hempel, C. G. (1965). Aspects of scientific explanation (Vol. 1). New York: Free Press. Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177(2), 213- 245.
  • Issad, T., & Malaterre, C. (2015). Are dynamic mechanistic explanations still mechanistic?. In P. A. Braillard & C. Malaterre (eds.), Explanation in biology: An enquiry into the diversity of explanatory patterns in the life sciences (pp. 265-292). Dordrecht: Springer.
  • Kendler, K. S., Gardner, C.O. & Prescott, C.A. (2006). Toward a Comprehensive Developmental Model for Major Depression in Men. American Journal of Psychiatry, 163, 115-124.
  • Kendler, K. S., Kuhn, J.W., Vittum, J., Prescott, C.A., & Riley, B. (2005). The Interaction of Stressful Life Events and a Serotonin Transporter Polymorphism in the Prediction of Episodes of Major Depression: A Replication. Archives of General Psychiatry 62, 529-535.
  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science 67(1), 1-25.
  • Mitchell, S. D., & Dietrich, M. R. (2006). Integration without unification: An argument for pluralism in the biological science. The American naturalist, 168(S6), S73-S79.
  • Mitchell, S. D., & Gronenborn, A. M. (2017). After fifty years, why are protein X-ray crystallographers still in business? The British Journal for the Philosophy of Science, 68(3), 703-723.
  • Mitchell, S. D. (1997). Pragmatic laws. Philosophy of Science, 64, S468-S479.
  • Mitchell, S. D. (2000). Dimensions of scientific laws. Philosophy of Science, 67(2), 242-265.
  • Mitchell, S. D. (2002). Integrative pluralism. Biology and Philosophy, 17(1), 55-70.
  • Mitchell, S. D. (2003). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.
  • Mitchell, S. D. (2008). Explaining complex behavior. In K. S. Kendler & J. Parnas (eds.), Philosophical issues in psychiatry: Explanation, phenomenology, and nosology (pp. 19-47). Baltimore: Johns Hopkins University Press.
  • Mitchell, S. D. (2009). Unsimple truths: Science, complexity, and policy. Chicago: University of Chicago Press.
  • Mitchell, S. D. (2012). Emergence: logical, functional and dynamical. Synthese, 185(2), 171-186.
  • Mitchell, S. D. (2020). Perspective, Representation and Integration. In M. Massimi & C. D. McCoy (eds.), Understanding Perspectivism: Scientific challenges and methodological prospects (pp. 178-193). New York: Routledge.
  • Moreno, A., & Suárez, J. (2020). Plurality of explanatory strategies in biology: Mechanisms and networks. In W.J. Gonzalez (ed.), Methodological Prospects for Scientific Research (pp. 141-165). Cham: Springer.
  • Sherman, P. W. (1988). The levels of analysis. Animal Behaviour, 36(2), 616-619.
  • Stoneham, A. M., & Harding, J. H. (2003). Not too big, not too small: The appropriate scale. Nature Materials, 2(2), 77.
  • Suárez, J., & Triviño, V. (2019). A metaphysical approach to holobiont individuality: Holobionts as emergent individuals. Quaderns de Filosofía, 6(1), 59-76.
  • Suárez, J. (under review). Scrutinizing microbiome determinism.
  • Triviño, V., & Suárez, J. (2020). Holobionts: Ecological communities, hybrids, or biological individuals? A metaphysical perspective on multispecies systems. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 84, 101323.
  • Wilson, M. (2012). What is classical mechanics anyway? In R. Batterman (ed.), Oxford handbook of philosophy of physics (pp. 43-106). Oxford; New York: Oxford University Press.
  • Winther, R. G. (2006). Parts and theories in compositional biology. Biology and Philosophy, 21, 471-499.
  • Woodward, J., & Ross, L. (2021). Scientific Explanation, The Stanford Encyclopedia of Philosophy (Summer  2021 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/sum2021/ entries/scientific-explanation/>. Accessed 25th of April 2023.