Crecimiento de grieta por fatiga asistida por hidrógenopre-carga vs. ensayos in-situ en ambientes gaseosos

  1. A. Zafra 1
  2. G. Álvarez 13
  3. G. Benoit 2
  4. G. Henaff 2
  5. E. Martínez-Pañeda 1
  6. C. Rodríguez 3
  7. J. Belzunce 3
  1. 1 Department of Civil and Environmental Engineering, Imperial College London
  2. 2 Institut Pprime, UPR 3346 CNRS ENSMA Université de Poitiers, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique, Futuroscope Chasseneuil, France
  3. 3 SIMUMECAMAT Research Group. Universidad de Oviedo Edificio Departamental Oeste
Aldizkaria:
Revista española de mecánica de la fractura

ISSN: 2792-4246

Argitalpen urtea: 2023

Zenbakia: 5

Orrialdeak: 257-262

Mota: Artikulua

Beste argitalpen batzuk: Revista española de mecánica de la fractura

Laburpena

We investigate the implications of conducting hydrogen-assisted fatigue crack growth experiments in a hydrogen gas environment (in-situ hydrogen charging) or in air (following exposure to hydrogen gas). The study is conducted on welded 42CrMo4 steel, a primary candidate for the future hydrogen transport infrastructure, allowing us to additionally gain insight into the differences in behaviour between the base steel and the coarse grain heat affected zone. The results reveal significant differences between the two testing approaches and the two weld regions. The differences are particularly remarkable for the comparison of testing methodologies, with fatigue crack growth rates being more than one order of magnitude higher over relevant loading regimes when the samples are tested in a hydrogen-containing environment, relative to the pre-charged samples. Aided by finite element modelling and microscopy analysis, these differences are discussed and rationalised. Independent of the testing approach, the heat affected zone showed a higher susceptibility to hydrogen embrittlement. Interestingly, similar microstructural behaviour is observed for both testing approaches, with the base metal exhibiting martensite lath decohesion while the heat affected zone experienced martensite lath decohesion, intergranular fracture and profuse secondary cracking.