A multicriteria scheme for identifying potential areas for Sustainable Urban Drainage Systems in urban and rural areas

  1. Suárez-Inclán, A. 1
  2. Roces-García, J. 11
  3. Allende-Prieto, C. 11
  4. Rey-Mahía, C. 1
  5. Sañudo Fontaneda, L. 11
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Actas:
Renovation wave: 12º Congreso Europeo sobre Eficiencia Energética y Sostenibilidad en Arquitectura y Urbanismo (EESAP 12) – 5º Congreso Internacional de Construcción Avanzada (CICA 5)
  1. Rufino J. Hernández Minguillón

Editorial: Universidad del País Vasco

ISBN: 978-84-1319-374-8

Año de publicación: 2021

Congreso: 12º Congreso Europeo sobre Eficiencia Energética y Sostenibilidad en Arquitectura y Urbanismo (EESAP 12) – 5º Congreso Internacional de Construcción Avanzada (CICA 5)

Tipo: Aportación congreso

Resumen

Cities are being affected more intensely and closely in time by the consequences of climate change, these being very varied, including those related to the increased probability of suffering strong episodes of flooding and diffuse pollution. In addition, in recent decades there has been an increase of urban areas, the problem is that this urban development has not been carried out from a point of view that takes into account sustainability in the management of runoff in cities. This has caused an alteration in today’s cities of the natural hydrological cycle that existed prior to urban development, mainly due to the large amount of built waterproof areas. This effect, alongside the inefficiency of conventional urban drainage infrastructures, modifies quantitatively and qualitatively the natural flows of the hydrological cycle and, consequently, generates increasing events of flooding in urban environments, deteriorating water quality and causing other negative environmental, social and economic consequences. Sustainable Urban Drainage Systems (SUDS) are one of the most widely used techniques to improve urban resilience. Their application allows urban areas to be successfully adapted to current and future climate scenarios and unpredictable changes. However, little research has been carried out on the development of transversal methodologies that allow the implementation of these techniques from an integrative urban planning angle. Likewise, the Water Sensitive Urban Design (WSUD) philosophy, which serves as the framework for the design pillars of the SUDS, is not implemented on a global scale throughout the city. The objective of this work is to develop a multicriteria methodology that collects the engineering parameters for controlling the volume and contamination of runoff, as well as, the social and biodiversity elements that contributes towards a holistic urban planning for urban water management. The methodology is being implemented to the city of Gijón (Spain) with a population of nearly three hundred thousand inhabitants living in an area of approximately 200 km2, divided in consolidated urban areas and rural. The results include a multiscale identification of priority urban and rural areas for SUDS implementation. According functional, environmental, social and economic aspects. In addition, the results allowed the selection of the most suitable SUDS types for the potential areas identified, in order to help increase the urban resilience.

Referencias bibliográficas

  • United Nations, World Urbanization Prospects 2018. 2018.
  • Ministerio de Fomento, “Áreas urbanas en España 2018. Constitución, Cuarenta años de las ciudades españolas,” Minist. Fom., pp. 1–42, 2018.
  • L. Herslund and P. Mguni, “Examining urban water management practices – Challenges and possibilities for transitions to sustainable urban water management in Sub-Saharan cities,” Sustain. Cities Soc., vol. 48, no. November, p. 101573, 2019, doi: 10.1016/j.scs.2019.101573.
  • P. Beceiro, R. S. Brito, and A. Galvão, “The contribution of NBS to urban resilience in stormwater management and control: A framework with stakeholder validation,” Sustain., vol. 12, no. 6, 2020, doi: 10.3390/su12062537.
  • AEMET, “Status report of the climate in Spain (2019),” State Meteorol. Agency - AEMET, vol. 1, no. 1, p. 88, 2019.
  • “Impervious Surfaces in French Creek Rick Guthrie , M . Sc ., P . Geo ., Regional Geomorphologist And John Deniseger , R . P . Bio ., Environmental Impact Biologist Ministry of Water , Land and Air Protection Vancouver Island British Columbia Percent water,” Area, 2001.
  • G. D. Bian et al., “A procedure for quantifying runoff response to spatial and temporal changes of impervious surface in Qinhuai River basin of southeastern China,” Catena, vol. 157, no. January, pp. 268–278, 2017, doi: 10.1016/j.catena.2017.05.023.
  • N. Rezazadeh Helmi, B. Verbeiren, A. Mijic, A. van Griensven, and W. Bauwens, “Developing a modeling tool to allocate Low Impact Development practices in a cost-optimized method,” J. Hydrol., vol. 573, no. March, pp. 98–108, 2019, doi: 10.1016/j.jhydrol.2019.03.017.
  • Q. Zhou, “A review of sustainable urban drainage systems considering the climate change and urbanization impacts,” Water (Switzerland), vol. 6, no. 4, pp. 976–992, 2014, doi: 10.3390/w6040976.
  • E. F. E. Sara Perales Momparler, Ignacio Andrés Doménech, “Los sistemas urbanos de drenaje sostemible (SUDS) en la hidrogeologia urbana.,” J. Clean. Prod., vol. 52, no. Ictg, pp. 17–23, 2011.
  • A. Al Mamoon, S. Jahan, X. He, N. E. Joergensen, and A. Rahman, “First flush analysis using a rainfall simulator on a micro catchment in an arid climate,” Sci. Total Environ., vol. 693, p. 133552, 2019, doi: 10.1016/j. scitotenv.2019.07.358.
  • J. H. Lee, K. W. Bang, J. H. Ketchum, J. S. Choe, and M. J. Yu, “First flush analysis of urban storm runoff,” Sci. Total Environ., vol. 293, no. 1–3, pp. 163–175, 2002, doi: 10.1016/S0048-9697(02)00006-2.
  • AEAS, “Informe sobre aguas residuales en España,” Asoc. Española Abastecimientos Agua y Saneam., pp. 1–22, 2017, [Online]. Available: http://www.asoaeas.com/sites/default/files/Documentos/Informe sobre aguas residuales AEAS.pdf.
  • J. Pérez Gutiérrez and F. Pérez y Pérez, “Agua y medio ambiente,” Agua y medio Ambient., no. 9, pp. 9–25, 2006, doi: 10.5209/rev_OBMD.2006.n9.22543.
  • V. Pappalardo and D. La Rosa, “Policies for sustainable drainage systems in urban contexts within performance-based planning approaches,” Sustain. Cities Soc., vol. 52, no. September 2019, p. 101830, 2020, doi: 10.1016/j.scs.2019.101830.
  • I. E. Report, Biodiversity and Nature-based Solutions.
  • ICLEI, “Resilient Cities , Thriving Cities : the Evolution of,” 2019.
  • J. Ingram and C. Hamilton, Planning for climate change: Guide – A strategic, values-based approach for urban planners. 2014.
  • E. Palazzo, “From water sensitive to floodable: defining adaptive urban design for water resilient cities,” J. Urban Des., vol. 24, no. 1, pp. 137–157, 2019, doi: 10.1080/13574809.2018.1511972.
  • M. I. Rodríguez-Rojas, M. M. Cuevas-Arrabal, B. M. Escobar, and G. M. Montes, “The paradigm change of urban drainage management from the planning perspective. A methodological proposal,” Bol. la Asoc. Geogr. Esp., vol. 2017, no. 75, pp. 55–74, 2017, doi: 10.21138/bage.2492.
  • J. Mysiak, H. J. Henrikson, C. Sullivan, J. Bromley, and C. Pahl-Wostl, The adaptive water resource management handbook. 2013.
  • Global Water Partnership, “Policy Brief | Integrated Urban Water Management (IUWM): Toward Diversification and Sustainability,” no. 16, pp. 1–4, 2013, [Online]. Available: www.gwp.org.
  • B. Gersonius, R. M. Ashley, C. Salinas-Rodríguez, J. Rijke, M. Radhakrishnan, and C. Zevenbergen, “Flood resilience in Water Sensitive Cities: Guidance for enhancing flood resilience in the context of an Australian water sensitive city,” no. January, p. 78, 2016.
  • M. Franco-Torres, B. C. Rogers, and R. Harder, “Articulating the new urban water paradigm,” Crit. Rev. Environ. Sci. Technol., vol. 0, no. 0, pp. 1–47, 2020, doi: 10.1080/10643389.2020.1803686.
  • L. A. Sañudo-Fontaneda, “Análisis de la infiltración de agua de lluvia en firmes permeables con superficies de adoquines y aglomerados porosos para el control en origen de inundaciones,” pp. 1–448, 2014.
  • A. Bahri, Integrated urban water management By Akiça Bahri, no. December. 2015.
  • S. L. J. Ariza et al., “A multicriteria planning framework to locate and select sustainable urban drainage systems (SUDS) in consolidated urban areas,” Sustain., vol. 11, no. 8, 2019, doi: 10.3390/su11082312.
  • H. Ávila, G. Amaris, and J. Buelvas, “Identifying Potential Areas for SUDS Application in Consolidated Urban Watersheds Based on GIS,” World Environ. Water Resour. Congr. 2016 Water, Wastewater, Stormwater Urban Watershed Symp. - Pap. from Sess. Proc. 2016 World Environ. Water Resour. Congr., no. 2005, pp. 106–114, 2016, doi: 10.1061/9780784479889.012.
  • R. Kellagher et al., The SUDS manual. 2015.
  • R. V. Match, “A-1 . Runoff Treatment and Volume Match What do the Rules Say ?,” vol. M, pp. 1–4, 2017.
  • “Plan General de Ordenación Urbana del Municipio de Gijón,” 2019.
  • Ministerio de Transportes, “Centro de Descargas,” Centro Nacional de Información Geográfica, 2021. https:// centrodedescargas.cnig.es/CentroDescargas/index.jsp.
  • MITECO, “Guías de adaptación al riesgo de inundación: sistemas urbanos de drenaje sostenible,” Minist. para la Transic. Ecológica, p. 96, 2019.
  • M. Hussain, M. M. Ajmal, M. Khan, and H. Saber, “Competitive priorities and knowledge management: An empirical investigation of manufacturing companies in UAE,” J. Manuf. Technol. Manag., vol. 26, no. 6, pp. 791–806, 2015.
  • Urban Drainage and Flood Control District, “Urban 1, Storm Drainage,” 2016.
  • C. C- et al., “Court of Justice of the European Union PRESS RELEASE No 67 / 16 For having delayed in implementing the Urban Waste Water Directive , Portugal is ordered to pay a lump sum payment of € 3 000 000 and a penalty payment of € 8 000 per day of delay,” no. 67, pp. 4–5, 2016.
  • Ministerio de Hacienda, “Sede Electrónica del Catastro,” 2021. https://www.sedecatastro.gob.es/.