Synthesis of phased arrays in complex environments with the multilevel characteristic basis function method

  1. J. Laviada 1
  2. R. Ayestarán 1
  3. M. R. Pino 1
  4. F. Las-Heras 1
  5. Mittra, Raj
  1. 1 Department of Electrical Engineering, Universidad de Oviedo
Revista:
Progress In Electromagnetics Research

ISSN: 1559-8985

Año de publicación: 2009

Volumen: 92

Páginas: 347-360

Tipo: Artículo

DOI: 10.2528/PIER09041801 GOOGLE SCHOLAR

Otras publicaciones en: Progress In Electromagnetics Research

Resumen

The aim of this paper is to present a method to carry out the synthesis of large phased arrays when they are affected by complex environments which can influence the radiation pattern. The synthesis is performed with the help of the Multilevel Characteristic Basis Function Method to calculate a matrix relating input voltages and the far field pattern samples. The method is illustrated with the synthesis of a Secondary Surveillance Radar antenna on a turret containing multiple obstacles.

Referencias bibliográficas

  • 1. Liu, Z. F., P. S. Kooi, L. W. Li, M. S. Leong, and T. S. Yeo, "A method of moments analysis of a microstrip phased array in three layered structures," Progress In Electromagnetic Research, PIER 31, 155-179, 2001.
  • 2. Yuan, T., L. W. Li, and M. S. Leong, "Efficient analysis and design of finite phased arrays of printed dipoles using fast algorithm: Some case studies," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 737-754, 2007. doi:10.1163/156939307780749057
  • 3. Hassani, H. R. and M. Jahanbakht, "Method of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008. doi:10.2528/PIERB08010602
  • 4. Ares, F. M., J. A. Rodrıguez, E. Villanueva, and S. R. Rengajaran, "Genetic algorithms in the design and optimization of antenna array pattern," IEEE Trans. Antennas Propagat., Vol. 47, 506-510, 1999. doi:10.1109/8.768786
  • 5. Landesa, L., F. Obelleiro, J. L. Rodriguez, and A. G. Pino, "Pattern synthesis of array antennas in presence of conducting bodies of arbitrary shape," Electronics Letters, Vol. 33, 1512-1513, 1997. doi:10.1049/el:19971014
  • 6. Ayestaran, R. G., F. Las-Heras, and L. F. Herran, "Neural modeling of mutual coupling for antenna array synthesis," IEEE Trans. Antennas Propagat., Vol. 55, 832-840, 2007. doi:10.1109/TAP.2007.891810
  • 7. Ayestaran, R. G., M. F. Campillo, and F. Las-Heras, "Multiple support vector regression for antenna array characterization and synthesis," IEEE Trans. Antennas Propagat., Vol. 55, No. 9, 2495-2501, 2007. doi:10.1109/TAP.2007.904077
  • 8. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Trans. Antennas Propagat. Mag., Vol. 53, 7-12, 1993. doi:10.1109/74.250128
  • 9. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1225-1251, 1996. doi:10.1029/96RS02504
  • 10. Heldring, A., J. M. Rius, J. M. Tamayo, J. Parron, and E. Ubeda, "Fast direct solution of method of moments linear system," IEEE Trans. Antennas Propagat., Vol. 55, No. 11, 3220-3228, 2007. doi:10.1109/TAP.2007.908804
  • 11. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1M unknowns," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2306-2313, 2008. doi:10.1109/TAP.2008.926739
  • 12. Prakash, V. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equation," Microwave Opt. Technol. Lett., Vol. 36, 95-100, 2003. doi:10.1002/mop.10685
  • 13. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008. doi:10.2528/PIERB08031206
  • 14. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 56, 999-1007, 2008. doi:10.1109/TAP.2008.919166
  • 15. Delgado, C., M. F. Catedra, and R. Mittra, "Application of the characteristic basis function method utilizing a class of basis and testing functions defined on NURBS patches," IEEE Trans. Antennas Propagat., Vol. 56, 784-791, 2008. doi:10.1109/TAP.2008.916935
  • 16. Laviada, J., F. Las-Heras, M. R. Pino, and R. Mittra, "Generation of nested characteristic basis functions," Proc. of European Conference on Antennas and Propagation (EuCAP 2009), Berlin, Germany, Mar. 23-27, 2009.
  • 17. Las-Heras, F., B. Galocha, and J. L. Besada, "Equivalent source modelling and reconstruction for antenna measurement and synthesis," Proc. IEEE AP-S International Symposium, Montreal, Vol. 1, 156-159, Canada, July 13-18, 1997.
  • 18. Van Tonder, J. and U. Jakobus, "Fast multipole solution Fast multipole solution," Proc. 21st Annual Review of Progress in Applied Computational Electromagnetics, ACES, Hawaii, 2005.