Análisis experimental de la influencia del ángulo de torsión de los álabes de turbinas hidrocinéticas Darrieus helicoidales

  1. Espina-Valdés, Rodolfo 1
  2. Fernández-Jiménez, Aitor 1
  3. Fernández-Pacheco, Victor Manuel 1
  4. Gharib-Yosry, Ahmed 2
  5. Álvarez-Álvarez, Eduardo 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  2. 2 Port Said University
    info

    Port Said University

    Puerto Saíd, Egipto

    ROR https://ror.org/01vx5yq44

Revista:
Ingeniería del agua

ISSN: 1134-2196

Año de publicación: 2022

Volumen: 26

Número: 3

Páginas: 205-216

Tipo: Artículo

DOI: 10.4995/IA.2022.17696 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ingeniería del agua

Resumen

Las turbinas hidrocinéticas se presentan como una alternativa futura para la obtención de energía de las corrientes de agua de manera sostenible. El aumento de eficiencia de dichas turbinas desde distintas aproximaciones constituye una línea de investigación en la que se están concentrado numerosos esfuerzos. Se presenta un estudio experimental donde se analiza la influencia del ángulo de torsión de los álabes en el funcionamiento de las turbinas hidrocinéticas de tipo Darrieus helicoidal. El estudio se realiza en el túnel de agua instalado en la Escuela Politécnica de Mieres (EPM, Universidad de Oviedo) que dispone de la instrumentación necesaria para obtener las características de evolución de la potencia producida con la velocidad de rotación para distintas condiciones de velocidad del flujo y bloqueo de la corriente. Se caracterizaron tres modelos de rotores de turbinas con distintos ángulos de torsión (30°, 45° y 60°), en condiciones de baja velocidad de corriente y bloqueo constante, pudiendo conocer las condiciones de máxima obtención de energía, con diferencias claras entre los casos ensayados. También se compararon los resultados con la potencia máxima que puede recuperarse de una corriente de agua, definida por el modelo del disco actuador para un flujo uniforme en canales, obteniendo máximos valores de eficiencia para el caso de 45° de ángulo de torsión.

Referencias bibliográficas

  • Álvarez-Álvarez, E., Rico-Secades, M., Corominas, E.L., Huerta-Medina, N., Soler-Guitarta, J. 2018. Design and control strategies for a modular hydroKinetic smart grid. International Journal of Electrical Power and Energy Systems, 95, 137–145. https://doi.org/10.1016/j.ijepes.2017.08.019
  • Asr, M.T., Nezhad, E.Z., Mustapha, F., Wiriadidjaja, S. 2016. Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy, 112, 528–537. https://doi.org/10.1016/j.energy.2016.06.059
  • Betz, A. 1920. Das Maximum der theoretisch möglichen Ausnutzung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwes. 26, 307-309.
  • Bachant, P., Wosnik, M. 2015. Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency. Renewable Energy, 74, 318–325. https://doi.org/10.1016/j.renene.2014.07.049
  • Brun, P., Terme, L., Barillier, A. 2013. Paimpol-Bréhat: Development of the First Tidal Array in France. In: Marine Renewable Energy Handbook. John Wiley & Sons, Inc., Hoboken, NJ USA, pp 279–310. https://doi.org/10.1002/9781118603185.ch9
  • Dhadwad, A., Balekar, A., Nagrale, P. 2014. Literature Review on Blade Design of Hydro-Microturbines. International Journal of Scientific & Engineering Research, 5, 72–75.
  • Divakaran, U., Ramesh, A., Mohammad, A., Velamati, R.K. Effect of helix angle on the performance of helical vertical axis wind turbine. Energies 2021;14:1–24. https://doi.org/10.3390/en14020393.
  • Espina-Valdés, R., Fernández-Jiménez, A., Fernández-Francos, J., Blanco-Marigorta, E., Álvarez-Álvarez, E. 2020. Small cross-flow turbine:Design and testing in high blockage conditions. Energy Conversion Management, 213, 112863. https://doi.org/10.1016/J.ENCONMAN.2020.112863
  • Gharib, A., Fernández-Jiménez, A., Álvarez-Álvarez, E., Marigorta, E.B. 2021. Design and characterization of a verticalaxis micro tidal turbine for low velocity scenarios. Energy Conversion Management, 237, 114144. https://doi.org/10.1016/j.enconman.2021.114144
  • Golecha, K., Eldho, T.I., Prabhu, S.V. 2012. Study on the interaction between two hydrokinetic Savonius turbines. I International Journal of Rotating Machinery, 2012, 581658. https://doi.org/10.1155/2012/581658
  • Goundar, J.N., Ahmed, M.R. 2014. Marine current energy resource assessment and design of a marine current turbine for Fiji. Renewable Energy, 65, 14-22. https://doi.org/10.1016/j.renene.2013.06.036
  • Houlsby, G.T.T., Draper, S., Oldfield, M.L.G. 2008. Application of Linear Momentum Actuator Disc Theory to Open Channel Flow by. Rep no OUEL 1–23.
  • Jayaram, V., Bavanish, B. 2021. A brief review on the Gorlov helical turbine and its possible impact on power generation in India. Materials Today: Proceedings, 37, 3343–3351. https://doi.org/10.1016/j.matpr.2020.09.203
  • Kinsey, T., Dumas, G. 2017. Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines. Renew Energy, 103, 239–254. https://doi.org/10.1016/J.RENENE.2016.11.021
  • Kolekar, N., Banerjee, A. 2015. Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148, 121–133. https://doi.org/10.1016/j.apenergy.2015.03.052
  • Lago, L.I., Ponta, F.L., Chen, L. 2010. Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development, 14, 287–296. https://doi.org/10.1016/j.esd.2010.09.004
  • Marsh, P., Ranmuthugala, D., Penesis, I., Thomas, G. 2015. Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew Energy, 81, 926–935. https://doi.org/10.1016/j.renene.2015.03.083.
  • Patel, V., Eldho, T.I, Prabhu, S.V. 2019. Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel. Renewable Energy, 131, 1300–1317. https://doi.org/10.1016/j.renene.2018.08.027
  • Ross, H., Polagye, B. 2020. An experimental assessment of analytical blockage corrections for turbines. Renewable Energy, 152, 1328-1341. https://doi.org/10.1016/j.renene.2020.01.135
  • dos Santos, I.F.S. Ramírez-Camacho, R.G., Tiago-Filho, G.L., Barkett-Botan, A.C., Amoeiro-Vinent, B. 2019. Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data. Renewable Energy, 143, 648–662. https://doi.org/10.1016/j.renene.2019.05.018