Análisis experimental de la influencia del ángulo de torsión de los álabes de turbinas hidrocinéticas Darrieus helicoidales

  1. Espina-Valdés, Rodolfo 1
  2. Fernández-Jiménez, Aitor 1
  3. Fernández-Pacheco, Victor Manuel 1
  4. Gharib-Yosry, Ahmed 2
  5. Álvarez-Álvarez, Eduardo 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  2. 2 Port Said University
    info

    Port Said University

    Puerto Saíd, Egipto

    ROR https://ror.org/01vx5yq44

Journal:
Ingeniería del agua

ISSN: 1134-2196

Year of publication: 2022

Volume: 26

Issue: 3

Pages: 205-216

Type: Article

DOI: 10.4995/IA.2022.17696 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Ingeniería del agua

Abstract

Hydrokinetic turbines are presented as a future alternative for obtaining energy from water currents in a sustainable way. The increase in the efficiency of these turbines from different approaches constitutes a line of research in which numerous efforts are being concentrated. An experimental study is presented where the influence of the twist angle of the blades in the operation of the hydrokinetic turbines of the helical Darrieus type is analysed. The study is carried out in the water tunnel installed at the Polytechnic School of Mieres (EPM, University of Oviedo) equipped with the necessary instrumentation to obtain the characteristics of the evolution of the power produced with the rotational speed for different flow velocities and current blockages. Three models of turbine rotors were characterized with different twist angles (30º, 45º and 60º), under low current velocity and constant blockage conditions being able to know the conditions of maximum energy production, with clear differences between the cases. The results were also compared with the maximum power that can be recovered from a water current, defined by the actuator disc model for a uniform flow in channels, obtaining maximum efficiency values for the case of 45º twist angle.

Bibliographic References

  • Álvarez-Álvarez, E., Rico-Secades, M., Corominas, E.L., Huerta-Medina, N., Soler-Guitarta, J. 2018. Design and control strategies for a modular hydroKinetic smart grid. International Journal of Electrical Power and Energy Systems, 95, 137–145. https://doi.org/10.1016/j.ijepes.2017.08.019
  • Asr, M.T., Nezhad, E.Z., Mustapha, F., Wiriadidjaja, S. 2016. Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy, 112, 528–537. https://doi.org/10.1016/j.energy.2016.06.059
  • Betz, A. 1920. Das Maximum der theoretisch möglichen Ausnutzung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwes. 26, 307-309.
  • Bachant, P., Wosnik, M. 2015. Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency. Renewable Energy, 74, 318–325. https://doi.org/10.1016/j.renene.2014.07.049
  • Brun, P., Terme, L., Barillier, A. 2013. Paimpol-Bréhat: Development of the First Tidal Array in France. In: Marine Renewable Energy Handbook. John Wiley & Sons, Inc., Hoboken, NJ USA, pp 279–310. https://doi.org/10.1002/9781118603185.ch9
  • Dhadwad, A., Balekar, A., Nagrale, P. 2014. Literature Review on Blade Design of Hydro-Microturbines. International Journal of Scientific & Engineering Research, 5, 72–75.
  • Divakaran, U., Ramesh, A., Mohammad, A., Velamati, R.K. Effect of helix angle on the performance of helical vertical axis wind turbine. Energies 2021;14:1–24. https://doi.org/10.3390/en14020393.
  • Espina-Valdés, R., Fernández-Jiménez, A., Fernández-Francos, J., Blanco-Marigorta, E., Álvarez-Álvarez, E. 2020. Small cross-flow turbine:Design and testing in high blockage conditions. Energy Conversion Management, 213, 112863. https://doi.org/10.1016/J.ENCONMAN.2020.112863
  • Gharib, A., Fernández-Jiménez, A., Álvarez-Álvarez, E., Marigorta, E.B. 2021. Design and characterization of a verticalaxis micro tidal turbine for low velocity scenarios. Energy Conversion Management, 237, 114144. https://doi.org/10.1016/j.enconman.2021.114144
  • Golecha, K., Eldho, T.I., Prabhu, S.V. 2012. Study on the interaction between two hydrokinetic Savonius turbines. I International Journal of Rotating Machinery, 2012, 581658. https://doi.org/10.1155/2012/581658
  • Goundar, J.N., Ahmed, M.R. 2014. Marine current energy resource assessment and design of a marine current turbine for Fiji. Renewable Energy, 65, 14-22. https://doi.org/10.1016/j.renene.2013.06.036
  • Houlsby, G.T.T., Draper, S., Oldfield, M.L.G. 2008. Application of Linear Momentum Actuator Disc Theory to Open Channel Flow by. Rep no OUEL 1–23.
  • Jayaram, V., Bavanish, B. 2021. A brief review on the Gorlov helical turbine and its possible impact on power generation in India. Materials Today: Proceedings, 37, 3343–3351. https://doi.org/10.1016/j.matpr.2020.09.203
  • Kinsey, T., Dumas, G. 2017. Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines. Renew Energy, 103, 239–254. https://doi.org/10.1016/J.RENENE.2016.11.021
  • Kolekar, N., Banerjee, A. 2015. Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148, 121–133. https://doi.org/10.1016/j.apenergy.2015.03.052
  • Lago, L.I., Ponta, F.L., Chen, L. 2010. Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development, 14, 287–296. https://doi.org/10.1016/j.esd.2010.09.004
  • Marsh, P., Ranmuthugala, D., Penesis, I., Thomas, G. 2015. Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew Energy, 81, 926–935. https://doi.org/10.1016/j.renene.2015.03.083.
  • Patel, V., Eldho, T.I, Prabhu, S.V. 2019. Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel. Renewable Energy, 131, 1300–1317. https://doi.org/10.1016/j.renene.2018.08.027
  • Ross, H., Polagye, B. 2020. An experimental assessment of analytical blockage corrections for turbines. Renewable Energy, 152, 1328-1341. https://doi.org/10.1016/j.renene.2020.01.135
  • dos Santos, I.F.S. Ramírez-Camacho, R.G., Tiago-Filho, G.L., Barkett-Botan, A.C., Amoeiro-Vinent, B. 2019. Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data. Renewable Energy, 143, 648–662. https://doi.org/10.1016/j.renene.2019.05.018