Materiales cerámicos policristalinos de AI2 O3 y YAG con funcionalidad óptica

  1. Suárez Menéndez, Marta
Dirigida per:
  1. Ramón Torrecillas San Millán Director/a
  2. Adolfo Fernández Valdés Director/a

Universitat de defensa: Universidad de Oviedo

Fecha de defensa: 11 de de març de 2009

Tribunal:
  1. Jose María Alameda Maestro President/a
  2. Santiago García Granda Secretari
  3. Sonia López Esteban Vocal
  4. Miguel Ángel Rodríguez Barbero Vocal
  5. David Gómez Plaza Vocal
Departament:
  1. Química Física y Analítica

Tipus: Tesi

Teseo: 194882 DIALNET lock_openTDX editor

Resum

En esta memoria se estudia la obtención de materiales policristalinos de alúmina y YAG (granate de itrio y aluminio) transparentes en el infrarrojo cercano y en el visible, empleando una ruta de procesamiento cerámico y evitando la introducción de segundas fases. La condición general que cualquier material no absorbente debe cumplir para evitar fenómenos de dispersión de luz y, por lo tanto, pérdidas de calidad óptica, es la homogeneidad espacial con respecto a sus propiedades dieléctricas. Por lo tanto, el tamaño de poro y, en el caso de materiales birrefringentes, el tamaño de grano, son los parámetros más importantes que es necesario controlar. En el caso de la alúmina, el empleo de métodos de sinterización convencionales produce un crecimiento de grano y una pérdida de transparencia. Para evitar este problema, se han seguido dos vías distintas: primero, se ha empleado un método de dopaje coloidal con alcóxidos de aluminio. Los resultados obtenidos muestran que este proceso modifica la superficie de los granos de alúmina mediante la nucleación y crecimiento de nanopartículas de [alfa]-alumina, consiguiendo un material final con una única fase. Se ha estudiado también cómo la modificación superficial de los granos de alúmina de la matriz cambia los mecanismos de difusión atómica durante la sinterización del material. Segundo, la sinterización de la alúmina pura y dopada mediante métodos no convencionales (SPS, Spark Plasma Sintering) ha permitido obtener muestras de alúmina transparentes, destacando que la alúmina dopada muestra mejores valores de transmitancia en línea. En el caso del YAG, se han empleado dos rutas de síntesis distingas: sol-gel y coprecipitación inversa, observándose que la segunda vía de síntesis, empleando cloruros como precursores, permite obtener un material de YAG puro a una temperatura de calcinación más baja y con un alto rendimiento. El material sintetizado se seca mediante un proceso de liofilización y se sinteriza mediante SPS obteniéndose un material de YAG con una elevada transmitancia. Finalmente, el YAG se ha dopado con un 1% atómico de Nd3+ empleando un método de procesamiento coloidal, proporcionando una funcionalización óptica adicional a dicho material: la emisión laser.