Numerical thermal analysis of a PCM-enhanced adaptive envelope prototype
-
1
Universidad de Oviedo
info
Editorial: HEFAT
ISBN: 978-0-7972-1886-4
Año de publicación: 2022
Páginas: 812-817
Congreso: 16th International Conference On Heat Transfer, Fluid Mechanics And Thermodynamics (HEFAT 2022)
Tipo: Aportación congreso
Resumen
Adaptive envelopes adjust their properties and behavior tothe dynamic requirements of buildings, improving thermalcomfort and reducing energy demand. Thus, in this work anumerical model is developed in order to assess the thermalbehavior of an innovative design of an adaptive envelope thatincludes phase change material (PCM) panels. The thermalanalysis is conducted through the finite volume method,implemented in the Computational Fluid Dynamics (CFD)software ANSYS Fluent®. The model allows comparing theenvelope response to transient external boundary conditions,with and without the PCM panels, while maintaining constantinterior conditions for all the studied cases. The main results arefocused on the PCM behavior and the thermal inertiaaugmentation. Concerning the PCM panels, the evolution oftheir temperature and liquid fraction in time was assessed,showing differences between panels placed at different heightsin the envelope. Higher PCM panels experimented higher valuesof liquid fraction, principally in the cases where the PCMsunderwent the phase change for the longest time. This reflectsthat for a taller envelope design, different responses could beexpected from PCMs placed at different heights. It was alsoobserved that the reduction of thermal oscillation showed greatervalues in the cases where the PCMs underwent the phase changethe longest time. Values of 40–60% were reached in the innerwall and 10–20% in the outer wall.
Información de financiación
This work was partially financed by Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología (FICYT) through the projects FC-GRUPINIDI/2018/000221 and AYUD72021751328.Financiadores
-
Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
Spain
- FC-GRUPINIDI/2018/000221
- AYUD72021751328
Referencias bibliográficas
- International Energy Agency, Tracking Buildings 2021, Paris, 2021.
- Eurostat, Energy consumption in households – Statistics Explained, June 2021.
- Levesque A., Pietzcker R.C., Baumstark L., de Stercke S., Grübler A. and Luderer G., How much energy will buildings consume in 2100? A global perspective within a scenario framework, Energy, Vol. 148, 2018, pp. 514-527.
- Tabadkani A., Roetzel A., Li H.X. and Tsangrassoulis A., Design approaches and typologies of adaptive facades: A review, Automation in Construction, vol. 121, 2021, pp. 103450.
- Loonen R.C.G.M., Trčka M., Cóstola D., and Hensen J.L.M., Climate adaptive building shells: State-of-the-art and future challenges, Renewable and Sustainable Energy Reviews, Vol. 25, 2013, pp. 483-493.
- De Gracia A. and Cabeza L.F., Phase change materials and thermal energy storage for buildings, Energy and Buildings, Vol. 103, 2015, pp. 414-419.
- Cabeza L.F., Castell A., Barreneche C., De Gracia A. and Fernández A.I., Materials used as PCM in thermal energy storage in buildings, Renewable and Sustainable Energy Reviews, Vol. 15, 2011, pp. 1675- 1695.
- De Gracia A., Navarro L., Castell A. and Cabeza L.F., Numerical study on the thermal performance of a ventilated facade with PCM, Applied Thermal Engineering, Vol. 61, 2013, pp. 372-380.
- De Gracia A., Navarro L., Castell A., Ruiz-Pardo S. and Cabeza L.F., Experimental study of a ventilated facade with PCM during winter period, Energy and Buildings, Vol. 58, 2013, pp. 324-332.
- Silva T., Vicente R., Soares N. and Ferreira V., Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution, Energy and Buildings, Vol. 49, 2012, pp. 253-245.
- Jin X., Medina A. and Zhang X., On the importance of the location of PCMs in building walls for enhanced thermal performance, Applied Energy, Vol. 106, 2013, pp. 72-78.
- Saffari M., De Gracia A., Fernández C. and Cabeza L.F., Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings, Applied Energy, Vol. 202, 2017, pp. 420-434.
- ANSYS Inc., Ansys Fluent - Fluid Simulation Software. https://www.ansys.com/products/fluids/ansys-fluent
- Meteotest. Meteonorm handbook, Parts I, II and III. Bern, Switzerland (2009). http://www.meteotest.ch
- ANSYS Inc., ANSYS Fluent Theory Guide, nº R1. Canonsburg, PA 15317, 2020.
- Rubitherm Technologies GmbH, PCM RT-Line. https://www.rubitherm.eu/en/index.php/productcategory/organischepcm-rt
- Ferrer G., Gschwander S., Solé A., Barreneche C., Fernández I., Schossig P. and CAbeza L.F., Empirical equation to estimate viscosity of paraffin, Journal of Energy Storage, Vol. 11, 2017, pp. 154-161.
- Mills A.F., Heat Transfer, 1st ed., McGraw-Hill, 1995.
- Ministerio de Transporte, Movilidad y Agenda Urbana. Documento de Apoyo al Documento Básico DB-HE Ahorro de Energía (Código Técnico de la Edificación). 2020.
- Incropera F.P., De Witt D.P., Fundamentals of Heat and Mass Transfer. Wiley and Sons, 7th ed., 2011.