Delimiting phylogeographic diversity in the genomic era: application to an Iberian endemic frog

  1. Dufresnes, Christophe 2
  2. Ambu, Johanna 2
  3. Galán, Pedro 9
  4. Sequeira, Fernando 3
  5. Viesca, Leticia 17
  6. Choda, Magdalena 1
  7. Álvarez, David 1
  8. Alard, Bérénice 3
  9. Suchan, Tomasz 6
  10. Künzel, Sven 5
  11. Martínez Solano, Iñigo 8
  12. Vences, Miguel 4
  13. Nicieza, Alfredo 17
  1. 1 Department of Biology of Organisms and Systems, University of Oviedo , C. Catedrático Rodrigo Uría s/n., 33006 Oviedo , Spain
  2. 2 Laboratory for Amphibian Systematic & Evolutionary Research, College of Biology and the Environment, Nanjing Forestry University , Longpan Rd, 159, 210037 Nanjing , People’s Republic of China
  3. 3 CIBIO, Centro de Investigação em Biodiversidade e Recursos Geneticos, Campus de Vairão, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto , Rua Padre Armando Quintas, 7, 4485-661 Vairão , Portugal
  4. 4 Zoological Institute, Technische Universität Braunschweig , Mendelssohnstr, 4, 38106 Braunschweig , Germany
  5. 5 Max Planck Institute for Evolutionary Biology , August-Thienemann-Str, 2, 24306 Plön , Germany
  6. 6 W. Szafer Institute of Botany, Polish Academy of Sciences , Lubicz, 46, 31‑512 Kraków , Poland
  7. 7 Biodiversity Research Institute (IMIB), University of Oviedo-Principality of Asturias-CSIC , C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres , Spain
  8. 8 Museo Nacional de Ciencias Naturales, MNCN-CSIC , C. de José Gutiérrez Abascal, 2, 28006 Madrid , Spain
  9. 9 Grupo de Investigación en Bioloxía Evolutiva (GIBE), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira s/n., 15071 A Coruña , Spain
Revista:
Zoological Journal of the Linnean Society

ISSN: 0024-4082 1096-3642

Año de publicación: 2023

Páginas: 1-15

Tipo: Artículo

DOI: 10.1093/ZOOLINNEAN/ZLAD170 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Zoological Journal of the Linnean Society

Resumen

The rich genetic and phenotypic diversity of species complexes is best recognized through formal taxonomic naming, but one must first assess the evolutionary history of phylogeographic lineages to identify and delimit candidate taxa. Using genomic markers, mitochondrial DNA barcoding, and morphometric analyses, we examined lineage diversity and distribution in the Iberian endemic frog Rana parvipalmata. We confirmed two deep phylogeographic lineages, one relatively homogenous genetically, found in Asturias and adjacent areas (T2), and one more fragmented and locally genetically impoverished, restricted to Galicia (T1). Analyses of their hybrid zone suggested a shallow transition characterized by far-ranging admixture, which was modelled by a wide geographic cline (~60 km for the genome average) and no obvious barrier loci (i.e. loci showing disproportionally restricted introgression). The relatively young T1 and T2 have thus remained reproductively compatible, which argues against their distinction as biological species, and we accordingly describe T2 as a new subspecies, Rana parvipalmata asturiensis ssp. nov. Remarkably, we highlight striking discordances between mitochondrial and nuclear distributions across their hybrid zones, as well as between their genetic and morphological differentiation. Our study illustrates how genomic-based phylogeographic frameworks can help decipher the high genetic and phenotypic variation of species complexes and substantiate the taxonomic assessment of candidate lineages.

Información de financiación

Financiadores

Referencias bibliográficas

  • Adams, (2008), Evolution, pp. 413
  • Álvarez, (2012), Proyectos de Investigación en Parques Nacionales: 2008–2011, pp. 125
  • Ambu, (2023), Amphibia-Reptilia, pp. 249
  • Ambu, (2023), Molecular Phylogenetics & Evolution, pp. 107783
  • Ashton, (2002), Canadian Journal of Zoology, pp. 708
  • Barton, (1993), Hybrid Zones and the Evolutionary Process, pp. 13, 10.1093/oso/9780195069174.003.0002
  • Bickford, (2007), Trends in Ecology & Evolution, pp. 148
  • Bland, (2015), Conservation Biology, pp. 250
  • Brelsford, (2016), Heredity, pp. 177
  • Burraco, (2018), Conservation Physiology, pp. 1
  • Cairns, (2021), Molecular Phylogenetics and Evolution, pp. 107042
  • Campillo, (2020), Systematic Biology, pp. 708
  • Cano, (2017), Proyectos de Investigación en Parques Nacionales: 2012-2015, pp. 439
  • Catchen, (2013), Molecular Ecology, pp. 3124
  • Chambers, (2022), Systematic Biology, pp. 357
  • Chan, (2021), Zootaxa, pp. 293
  • Chan, (2022), BMC Ecology and Evolution, pp. 1
  • Choda, (2014), Ph.D. Thesis
  • Cruaud, (2014), Molecular Biology and Evolution, pp. 1272
  • Currat, (2008), Evolution, pp. 1908
  • Degnan, (2009), Trends in Ecology & Evolution, pp. 332
  • de Queiroz, (2020), Herpetological Review, 51, pp. 459
  • Derryberry, (2014), Molecular Ecology Resources, pp. 652
  • Dufresnes, (2019), Amphibians of Europe, North Africa, and the Middle East
  • Dufresnes, (2022), Biological Journal of the Linnean Society, pp. 40
  • Dufresnes, (2021), Proceedings of the National Academy of Sciences of the United States of America, pp. e2103963118
  • Dufresnes, (2021), Journal of Zoological Systematics & Evolutionary Research, pp. 2170
  • Dufresnes, (2022), Science, pp. 1272
  • Dufresnes, (2022), Zoological Journal of the Linnean Society, pp. 695
  • Dufresnes, (2020), Molecular Ecology, pp. 986
  • Dufresnes, (2023), Proceedings of the National Academy of Sciences of the United States of America, pp. e2302424120
  • Dufresnes, (2020), Heredity, pp. 423
  • Dufresnes, (2021), Integrative Zoology, pp. 420
  • Earl, (2012), Conservation Genetics Resources, pp. 359
  • Edwards, (2016), Proceedings of the National Academy of Sciences, pp. 8025
  • Enriquez-Urzelai, (2018), Journal of Evolutionary Biology, pp. 1852
  • Enriquez-Urzelai, (2019), Global Change Biology, pp. 2633
  • Enriquez-Urzelai, (2019), Oecologia, pp. 385
  • Enriquez-Urzelai, (2020), The Journal of Animal Ecology, pp. 1722
  • Fedosov, (2022), Molecular Ecology Resources, pp. 2038
  • Freudenstein, (2017), Systematic Biology, pp. 644
  • Frost, (2023), Amphibian Species of the World: An Online Reference. Version 6.1
  • Galán, (1989), Treballs de la Societat Catalana d’Ictiología i Herpetología. Barcelona, 2, pp. 193
  • Galán, (2010), Amphibia-Reptilia, pp. 144
  • Goudet, (2005), Molecular Ecology Notes, 5, pp. 184, 10.1111/j.1471-8286.2004.00828.x
  • Gouy, (2021), Multiple Sequence Alignment. Methods in Molecular Biology, pp. 241, 10.1007/978-1-0716-1036-7_15
  • Gutiérrez-Pesquera, (2022), Ecology and Evolution, pp. e9349
  • Hawlitschek, (2012), PLoS One, pp. e42970
  • Hillis, (2020), Herpetological Review, 51, pp. 52
  • Hillis, (2022), Herpetological Review, 53, pp. 47
  • Huson, (2006), Molecular Biology and Evolution, pp. 254
  • Iglesias-Carrasco, (2022), Freshwater Biology, pp. 378
  • Jombart, (2008), Bioinformatics, pp. 1403
  • Kimball, (2021), Gene, pp. 145841
  • Kindler, (2018), Vertebrate Zoology, pp. 269
  • Kollár, (2022), Molecular Ecology, pp. 411
  • Liu, (2022), Conservation Letters, pp. e12876
  • López-Seoane, (1885), The Zoologist, 9, pp. 169
  • Malone, (2008), PLoS One, pp. e3900
  • Miralles, (2017), Zoological Journal of the Linnean Society, pp. 678
  • O’Brien, (1991), Science, pp. 1149
  • Padial, (2010), Frontiers in Zoology, pp. 16
  • Paris, (2017), Methods in Ecology and Evolution, pp. 1360
  • Pollock, (2020), Trends in Ecology & Evolution, pp. 1119
  • Pritchard, (2000), Genetics, pp. 945
  • R Core Team, (2022), R: A Language and Environment for Statistical Computing
  • Recuero, (2011), Molecular Phylogenetics and Evolution, pp. 170
  • Rochette, (2023), Molecular Ecology Resources, pp. 1299
  • Rubinoff, (2005), Systematic Biology, pp. 952
  • Salvador, (1974), Guia de los Anfibios y Reptiles Españoles
  • Scherz, (2022), Megataxa, pp. 113
  • Seehausen, (2008), Molecular Ecology, pp. 30
  • Singhal, (2013), Proceedings Biological Sciences, pp. 20132246
  • Slavenko, (2015), Journal of Biogeography, pp. 1246
  • Speybroeck, (2020), Amphibia-Reptilia, pp. 139
  • Sukumaran, (2017), Proceedings of the National Academy of Sciences of the United States of America, pp. 1607
  • Sukumaran, (2021), PLoS Computational Biology, pp. e1008924
  • Veith, (2002), Folia Zoologica, 51, pp. 307
  • Veith, (2012), The Journal of Heredity, pp. 240
  • Velo-Antón, (2021), Scientific Reports, pp. 9259
  • Vences, (1992), Salamandra, 28, pp. 61
  • Vences, (2013), Molecular Phylogenetics and Evolution, pp. 657
  • Vences, (2017), Salamandra, 53, pp. 25
  • Vences, (2021), Megataxa, pp. 77
  • Weaver, (2020), Ecology & Evolution, pp. 12115
  • Wielstra, (2019), Journal of Biogeography, pp. 1300
  • Zachos, (2013), Nature, pp. 35
  • Zachos, (2015), Journal of Zoological Systematics and Evolutionary Research, pp. 180
  • Zachos, (2016), Species Concepts in Biology, 10.1007/978-3-319-44966-1