Growth conditions trigger genotype-specific metabolic responses that affect the nutritional quality of kale cultivars.

  1. Ishihara, Hirofumi 6
  2. Alegre, Sara 2
  3. Vázquez Pascual, Jesús 23
  4. Trotta, Andrea 24
  5. Yang, Wei 5
  6. Yang, Baoru 5
  7. Seyednasrollah, Fatemeh 9
  8. Burow, Meike 1
  9. Kangasjärvi, Saijaliisa 678
  1. 1 DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen , Thorvaldsensvej 40, 1871 Frederiksberg C , Denmark.
  2. 2 Molecular Plant Biology, Department of Life Technologies, University of Turku , 20014, Turku , Finland.
  3. 3 Departamento de Biología de Organismos y Sistemas, área de Fisiología Vegetal. Universidad de Oviedo, España.
  4. 4 Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR) , via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI) , Italy.
  5. 5 Food Sciences, Department of Life Technologies, University of Turku , 20014 Turku , Finland.
  6. 6 Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, 00014 University of Helsinki , Helsinki , Finland.
  7. 7 Faculty of Agriculture and Forestry, Department of Agricultural Sciences, 00014 University of Helsinki , Helsinki , Finland.
  8. 8 Viikki Plant Science Centre, 00014 University of Helsinki , Helsinki , Finland.
  9. 9 Institute of Biotechnology, HILIFE – Helsinki Institute of Life Science, University of Helsinki , Helsinki , Finland.
Zeitschrift:
Journal of Experimental Botany

ISSN: 0022-0957 1460-2431

Datum der Publikation: 2024

Art: Artikel

DOI: 10.1093/JXB/ERAE169 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Journal of Experimental Botany

Zusammenfassung

Kales (Brassica oleracea convar. acephala) are fast-growing, nutritious leafy vegetables ideal for year-round indoor farming. However, selection of the best cultivars for growth under artificial lighting necessitates a deeper understanding of leaf metabolism in different kale types. Here we examined a curly-leaved cultivar, Half Tall, and a lacinato-type cultivar, Black Magic, under moderate light (130 µmol photons m−2 s−1/22 °C) and high light (800 µmol photons m−2 s−1/26 °C) conditions. These conditions induced genotype-dependent differences in nutritionally important metabolites, especially anthocyanins and glucosinolates (GSLs), in kale cultivars. In the pale green Half Tall, growth under high light conditions did not induce changes in either pigmentation or total GSL content. In contrast, the purple pigmentation of Black Magic intensified due to increased anthocyanin accumulation. Black Magic showed reduced contents of indole GSLs and increased contents of aliphatic GSLs under high light conditions, with notable cultivar-specific adjustments in individual GSL species. Correlation analysis of metabolite profiles suggested cultivar-specific metabolic interplay between serine biosynthesis and the production of indole GSLs. RNA sequencing identified candidate genes encoding metabolic enzymes and regulatory components behind anthocyanin and GSL biosynthesis. These findings improve our understanding of leaf metabolism and its effects on the nutritional quality of kale cultivars.

Informationen zur Finanzierung

Geldgeber

  • Novo Nordisk Plant Science, Agriculture and Food Biotechnology—Project
    • NNF20OC0065026
  • Academy of Finland
    • 307719
    • 343527
    • 325122
    • 303757
    • 307335
    • 318894
  • Spanish Ministry of Science and Innovation Juan de la Cierva Incorporación Programme
    • IJC-2019-040330-I

Bibliographische Referenzen

  • Anderson, (1986), Annual Review of Plant Physiology and Plant Molecular Biology, 37, pp. 93, 10.1146/annurev.pp.37.060186.000521
  • Andrews, (2010)
  • Arias, (2021), Frontiers in Plant Science, 12, pp. 637115, 10.3389/fpls.2021.637115
  • Aro, (1993), Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1143, pp. 113, 10.1016/0005-2728(93)90134-2
  • Beekwilder, (2008), PLoS One, 3, pp. e2068, 10.1371/journal.pone.0002068
  • Benderoth, (2009), Phytochemistry Reviews, 8, pp. 255, 10.1007/s11101-008-9097-1
  • Benstein, (2013), The Plant Cell, 25, pp. 5011, 10.1105/tpc.113.118992
  • Blažević, (2020), Phytochemistry, 169, pp. 112100, 10.1016/j.phytochem.2019.112100
  • Bolger, (2014), Bioinformatics, 30, pp. 2114, 10.1093/bioinformatics/btu170
  • Borevitz, (2000), The Plant Cell, 12, pp. 2383, 10.1105/tpc.12.12.2383
  • Cai, (2020), Theoretical and Applied Genetics, 133, pp. 3187, 10.1007/s00122-020-03664-3
  • Cargnel, (2014), New Phytologist, 204, pp. 342, 10.1111/nph.13032
  • Castañeda-Ovando, (2009), Food Chemistry, 113, pp. 859, 10.1016/j.foodchem.2008.09.001
  • Castro, (2019), Cancer Prevention Research, 12, pp. 147, 10.1158/1940-6207.CAPR-18-0241
  • Celenza, (2005), Plant Physiology, 137, pp. 253, 10.1104/pp.104.054395
  • Chalker-Scott, (1999), Photochemistry and Photobiology, 70, pp. 1, 10.1111/j.1751-1097.1999.tb01944.x
  • Cheung, (2010), The AAPS Journal, 12, pp. 87, 10.1208/s12248-009-9162-8
  • Christensen, (2011), Genetic Resources and Crop Evolution, 58, pp. 657, 10.1007/s10722-010-9607-z
  • Clarke, (2010), Analytical Methods, 2, pp. 310, 10.1039/b9ay00280d
  • Connolly, (2021), Frontiers in Pharmacology, 12, pp. 767975, 10.3389/fphar.2021.767975
  • Crocoll, (2016), Current Protocols in Plant Biology, 1, pp. 385, 10.1002/cppb.20027
  • Demmig-Adams, (1996), Physiologia Plantarum, 98, pp. 253, 10.1034/j.1399-3054.1996.980206.x
  • Dinkova-Kostova, (2012), Trends in Molecular Medicine, 18, pp. 337, 10.1016/j.molmed.2012.04.003
  • Dobin, (2013), Bioinformatics, 29, pp. 15, 10.1093/bioinformatics/bts635
  • Felker, (2016), Nutrition Reviews, 74, pp. 248, 10.1093/nutrit/nuv110
  • FAO., (2021), Fruit and vegetables – your dietary essentials. The International Year of Fruits and Vegetables
  • Foyer, (2018), Environmental and Experimental Botany, 154, pp. 134, 10.1016/j.envexpbot.2018.05.003
  • Francisco, (2017), Annals of Applied Biology, 170, pp. 273, 10.1111/aab.12318
  • Frerigmann, (2016), Molecular Plant, 9, pp. 682, 10.1016/j.molp.2016.01.006
  • Gigolashvili, (2007), The Plant Journal, 50, pp. 886, 10.1111/j.1365-313X.2007.03099.x
  • Greer, (1957), The American Journal of Clinical Nutrition, 5, pp. 957, 10.1093/ajcn/5.4.440
  • Gu, (2017), Frontiers in Plant Science, 8, pp. 1082, 10.3389/fpls.2017.01082
  • Hahn, (2016), Journal of Agricultural and Food Chemistry, 64, pp. 3215, 10.1021/acs.jafc.6b01000
  • Halkier, (1997), Trends in Plant Science, 2, pp. 425, 10.1016/S1360-1385(97)90026-1
  • Halkier, (2006), Annual Review of Plant Biology, 57, pp. 303, 10.1146/annurev.arplant.57.032905.105228
  • Hall, (2001), Theoretical and Applied Genetics, 102, pp. 369, 10.1007/s001220051655
  • Hirai, (2007), Proceedings of the National Academy of Sciences USA, 104, pp. 6478, 10.1073/pnas.0611629104
  • Hurst, (2020), Frontiers in Nutrition, 7, pp. 16, 10.3389/fnut.2020.00016
  • Igamberdiev, (2018), Frontiers in Plant Science, 9, pp. 318, 10.3389/fpls.2018.00318
  • Jensen, (2014), Biological Chemistry, 395, pp. 529, 10.1515/hsz-2013-0286
  • Jeschke, (2018), eLS
  • Jiang, (2018), Drug Design, Development and Therapy, 12, pp. 2905, 10.2147/DDDT.S100534
  • Kim, (2015), The Plant Cell, 27, pp. 1529, 10.1105/tpc.15.00127
  • Kim, (2017), Frontiers in Plant Science, 8, pp. 1787, 10.3389/fpls.2017.01787
  • Kliebenstein, (2007), The Plant Journal, 51, pp. 1062, 10.1111/j.1365-313X.2007.03205.x
  • Kliebenstein, (2001), Genetics, 159, pp. 359, 10.1093/genetics/159.1.359
  • Kliebenstein, (2001), Plant Physiology, 126, pp. 811, 10.1104/pp.126.2.811
  • Kliebenstein, (2001), The Plant Cell, 13, pp. 681
  • Kono, (2014), Plant and Cell Physiology, 55, pp. 990, 10.1093/pcp/pcu033
  • Kumar, (2019), The Plant Cell, 31, pp. 1633, 10.1105/tpc.19.00046
  • LaFountain, (2021), New Phytologist, 231, pp. 933, 10.1111/nph.17397
  • Lee, (2020), Animals, 10, pp. 2337, 10.3390/ani10122337
  • Li, (2003), Theoretical and Applied Genetics, 106, pp. 1116, 10.1007/s00122-002-1161-4
  • Liu, (2014), Nature Communications, 5, pp. 3930, 10.1038/ncomms4930
  • Liu, (2018), Frontiers in Chemistry, 6, pp. 52, 10.3389/fchem.2018.00052
  • Mageney, (2017), Molecules, 22, pp. 252, 10.3390/molecules22020252
  • Magrath, (1994), Heredity, 72, pp. 290, 10.1038/hdy.1994.39
  • Millard, (2019), Nucleic Acids Research, 47, pp. 9592, 10.1093/nar/gkz691
  • Mithen, (1995), Heredity, 74, pp. 210, 10.1038/hdy.1995.29
  • Mitsiogianni, (2019), Antioxidants, 8, pp. 106, 10.3390/antiox8040106
  • Miyake, (2010), Plant and Cell Physiology, 51, pp. 1951, 10.1093/pcp/pcq173
  • Muller, (2001), Plant Physiology, 125, pp. 1558, 10.1104/pp.125.4.1558
  • Ohama, (2017), Trends in Plant Science, 22, pp. 53, 10.1016/j.tplants.2016.08.015
  • Okamura, (2017), Scientific Reports, 7, pp. 3533, 10.1038/s41598-017-03807-5
  • Orouji, (2023), Medical Oncology, 40, pp. 344, 10.1007/s12032-023-02211-6
  • Paissoni, (2018), Scientific Reports, 8, pp. 17098, 10.1038/s41598-018-35355-x
  • Pascual, (2017), eLS.
  • Petersen, (2019), Metabolic Engineering, 54, pp. 24, 10.1016/j.ymben.2019.02.004
  • Petersen, (2018), Journal of Integrative Plant Biology, 60, pp. 1231, 10.1111/jipb.12705
  • Piippo, (2006), Physiological Genomics, 25, pp. 142, 10.1152/physiolgenomics.00256.2005
  • Rahikainen, (2017), The Plant Journal, 89, pp. 112, 10.1111/tpj.13326
  • R Core Team., (2018)
  • Ritchie, (2015), Nucleic Acids Research, 43, pp. e47, 10.1093/nar/gkv007
  • Robinson, (2010), Bioinformatics, 26, pp. 139, 10.1093/bioinformatics/btp616
  • Robinson, (2010), Genome Biology, 11, pp. R25, 10.1186/gb-2010-11-3-r25
  • Ros, (2014), Trends in Plant Science, 19, pp. 564, 10.1016/j.tplants.2014.06.003
  • Schwacke, (2019), Molecular Plant, 12, pp. 879, 10.1016/j.molp.2019.01.003
  • Sims, (2002), Remote Sensing of Environment, 81, pp. 337, 10.1016/S0034-4257(02)00010-X
  • Smeriglio, (2016), Phytotherapy Research, 30, pp. 1265, 10.1002/ptr.5642
  • Smyth, (1995), Current Biology, 5, pp. 361, 10.1016/S0960-9822(95)00072-8
  • Sønderby, (2010), Trends in Plant Science, 15, pp. 283, 10.1016/j.tplants.2010.02.005
  • Sønderby, (2007), PLoS One, 2, pp. e1322, 10.1371/journal.pone.0001322
  • Stracke, (2007), The Plant Journal, 50, pp. 660, 10.1111/j.1365-313X.2007.03078.x
  • Thoma, (2020), Frontiers in Plant Science, 11, pp. 497, 10.3389/fpls.2020.00497
  • Tikkanen, (2012), Philosophical Transactions of the Royal Society B, 367, pp. 3486, 10.1098/rstb.2012.0067
  • Tiwari, (2016), Nature Plants, 2, pp. 16035, 10.1038/nplants.2016.35
  • Tohge, (2016), Nature Communications, 7, pp. 9, 10.1038/ncomms12399
  • Traka, (2016), Advances in Botanical Research, 80, pp. 247, 10.1016/bs.abr.2016.06.004
  • Upadhyaya, (2019), International Journal of Molecular Sciences, 20, pp. 1027, 10.3390/ijms20051027
  • Verkerk, (2009), Molecular Nutrition and Food Research, 53, pp. 219, 10.1002/mnfr.200800065
  • Windsor, (2005), Phytochemistry, 66, pp. 1321, 10.1016/j.phytochem.2005.04.016
  • Wink, (2010), Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, pp. 1, 10.1002/9781444320503.ch1
  • Wittstock, (2010), The Arabidopsis Book, 8, pp. e0134, 10.1199/tab.0134
  • Yamagishi, (2016), Pharmaceutical Biology, 54, pp. 2329, 10.3109/13880209.2016.1138314
  • Yang, (2018), Journal of Agricultural and Food Chemistry, 66, pp. 2909, 10.1021/acs.jafc.7b05924
  • Yin, (2019), Molecular Therapy – Oncolytics, 14, pp. 74, 10.1016/j.omto.2019.03.011
  • Zeng, (2010), Physiologia Plantarum, 138, pp. 215, 10.1111/j.1399-3054.2009.01316.x
  • Zimmermann, (2021), Plant Molecular Biology, 107, pp. 85, 10.1007/s11103-021-01181-5