Last Local Glacial Maximum and deglaciation of the Andean Central Volcanic Zonethe case of Hualcahualca volcano and Patapampa Altiplano (Southern Peru)El caso del volcán HualcaHualca y del altiplano de Patapampa (Sur de Perú)

  1. J. Alcalá Reygosa 12
  1. 1 Universidad Nacional Autónoma de México
    info

    Universidad Nacional Autónoma de México

    Ciudad de México, México

    ROR https://ror.org/01tmp8f25

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Palacios Estremera, David (ed. lit.)
  2. Vázquez-Selem, Lorenzo (ed. lit.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2017

Volumen: 43

Número: 2

Páginas: 649-666

Tipo: Artículo

DOI: 10.18172/CIG.3231 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

El objetivo de este trabajo es conocer cuándo comenzó el retroceso de los glaciares desde el Último Máximo Glaciar Local tanto en el volcán HualcaHualca y el Altiplano de Patapampa, ambos localizados al sur de Perú, como en la Zona Volcánica Centroandina. Para ello se presentan 9 edades de exposición a la radiación cósmica procedentes de morrenas y umbrales rocosos pulidos y estriados. Dichas edades indican que los glaciares del HualcaHualca alcanzaron su máxima extensión hace ~17-16 ka en sincronía con el Heinrich 1 y la formación del paleolago Tauca. Desde entonces los glaciares empezaron a retroceder hasta ~12 ka cuando experimentaron un reavance o una fase de estabilización. La deglaciación fue constante desde hace ~11.5 ka en el HualcaHualca, coincidiendo con la desaparición del casquete de Hielo de Patapampa. Esta evolución de los glaciares del área de estudio no corrobora un Último Máximo Glaciar Local más antiguo que el Último Máximo Glaciar global pero sí indica su elevada sensibilidad a los cambios en la precipitación. De acuerdo con el análisis de las edades de exposición a la radiación cósmica de los volcanes HualcaHualca, Sajama y Tunupa, se infiere que el inicio de la deglaciación en la Zona Volcánica Centroandina tuvo lugar al finalizar el evento Heinrich 1 y la fase lacustre Tauca. Sin embargo, el retroceso no fue continuo ya que se registra al menos un reavance o fase de estabilización en la mayoría de los volcanes estudiados aunque la inconsistencia entre sus edades no permite relacionar con claridad dicha fase glaciar con los eventos climáticos fríos Younger Dryas y Antarctic Cold Reversal. Después, las masas de hielo de la Zona Volcánica Centroandina experimentaron un marcado retroceso, interrumpido temporalmente por al menos tres reavances o periodos de estabilización de menor entidad que evidencian que el clima durante el Holoceno no fue continuamente cálido y/o seco. Por último cabe destacar que a pesar de que las edades de exposición a la radiación cósmica proporcionan una información cronológica valiosa, de momento no permiten reconstruir de forma sólida la historia de los glaciares y establecer conexiones claras con los principales eventos fríos debido a las limitaciones que presentan las tasas de producción y el uso de diferentes modelos de escala. Con el objeto de reducir la incertidumbre derivada de estas limitaciones, sería necesario determinar una tasa de producción precisa de cada isótopo cosmogénico en los Andes Centrales, un modelo de escala de referencia y recalcular las edades publicadas.

Información de financiación

This work was carried out with the support of Project CGL2012-35858 funded by the Spanish Ministry of Economy and Competitiveness.

Financiadores

Referencias bibliográficas

  • Alcalá, J., Palacios, D., Zamorano, J.J. 2010. Glacial recession in the Tropical Andes from the Little Ice Age: the case of Ampato Volcanic Complex (Southern Peru). 6th Alexander von Humboldt International Conference, Mérida, México. AvH6-10, 2010. http://meetingorganizer.copernicus.org/AvH6/AvH6-10.pdf.
  • Alcalá, J. 2015. La evolución volcánica, glaciar y periglaciar del Complejo Volcánico Ampato (Sur de Perú). Ph.D. Thesis, Complutense University of Madrid, Spain. http://eprints.ucm.es/29492/.
  • Alcalá-Reygosa, J., Palacios, D., Zamorano Orozco, J.J. 2016. Geomorphology of the Ampato volcanic complex (southern Peru). Journal of Maps 12 (5), 1160-1169. http://doi.org/10.1080/17445647.2016.1142479.
  • Amman, C., Jenny, B., Kammer, K., Messerli, B. 2001. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18-29º S). Palaeography, Palaeoclimatology, Palaeoecology 172 (3-4), 313-326. http://doi.org/10.1016/S0031-0182(01)00306-6.
  • Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R. B., Grove, M.J., Tapia, P. M., Cross, S. L., Rowe, H.D., Broda, J. P. 2001. The History of South American Tropical Precipitation for the Past 25,000 years. Science 291 (5504), 640-643. https://doi.org/10.1126/science.291.5504.640.
  • Balco, G., Stone, J. O., Lifton, N. A., Dunai, T. J. 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3 (3), 174-195. http://doi.org/10.1016/j.quageo.2007.12.001.
  • Blard, P.H., Sylvestre, F., Tripati, A.K., Claude, C., Causse, C., Coudrain, A., Condom, T., Seidel, J.L., Vimeux, F., Moreau, C., Dumoulin, J.P., Lavé, J. 2011. Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U-Th dating and δ 18O of carbonates. Quaternary Science Research 30 (27-28), 3973-3989. http://doi.org/10.1016/j.quascirev.2011.11.001.
  • Blard, P.H., Lave, J., Sylvestre, F., Placzek, C.J., Claude, C., Galy, V., Condom, T., Tibari, B. 2013. Cosmogenic 3He production rate in the high tropical Andes (3800 m, 20ºS): Implications for the local last glacial maximum. Earth and Planetary Science Letters 377-378, 260-275. http://doi.org/10.1016/j.epsl.2013.07.006.
  • Blard, P.H., Lavé, J., Farley, K.A., Ramirez, V., Jimenez, N., Martin, L., Charreau, J., Tibari, B., Fornari, M. 2014. Progressive glacial retreat in the Southern Altiplano (Uturuncu volcano, 22°S) between 65 and 14 ka constrained by cosmogenic 3He dating. Quaternary Research 82 (1), 209-221. http://doi.org/10.1016/j.yqres.2014.02.002.
  • Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J. 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188-198. http://doi.org/10.1016/j.quageo.2015.01.009.
  • Bromley G. R.M., Schaefer J.M., Winckler, G., Hall, B.L., Todd, C.E., Rademaker K.M. 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews 28 (23-24), 1-13. http://doi.org/10.1016/j.quascirev.2009.05.012.
  • Bromley, R.M., Hall, B.L., Schaefer, J.M., Winckler, G., Todd, C.E., Rademaker, K.M. 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science 26 (1), 37-43. http://doi.org/10.1002/jqs.1424.
  • Clapperton, C.M. 1993. Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam.
  • Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M. 2009. The Last Glacial Maximum. Science 325 (5941), 710-714. https://doi.org/10.1126/science.1172873.
  • Clayton J.D., Clapperton C.M. 1997. Broad synchrony of Late-glacial glacier advance and the highstand of paleolake Tauca in the Bolivian Altiplano. Journal of Quaternary Science 12 (3), 169-182. http://doi.org/10.1002/(SICI)1099-1417(199705/06)12:3<169::AID-JQS304>3.0.CO;2-S.
  • Desilets, D., Zreda, M., Almasi, P.F., Elmore, D. 2006. Determination of cosmogenic 36Cl in rocks by isotope dilution: innovations, validation and error propagation. Chemical Geology 233 (3-4), 185-195. http://doi.org/10.1016/j.chemgeo.2006.03.001.
  • Dornbusch, U. 1998. Current large-scale climatic conditions in Southern Peru and their influence on snowline altitudes. Erdkunde 52 (1), 41-54. http://doi.org/10.3112/erdkunde.1998.01.04.
  • Dunai, T.J. 2000. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters 176 (1), 157-169. http://doi.org/10.1016/S0012-821X(99)00310-6.
  • Farber, D.L., Hancock, G.S., Finkel, R.C., Rodbell, D.T. 2005. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20 (7- 8), 759-776. http://doi.org/10.1002/jqs.994.
  • Fink, D., Vogt, S., Hotchkis, M. 2000. Cross-sections for 36Cl from Ti at Ep =35-150 MeV: applications to in-situ exposure dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172 (1-4), 861-866. http://doi.org/10.1016/S0168-583X(00)00200-7.
  • Fornace, K.L., Hughen, K.A., Shanahan, T.M., Fritz, S.C., Baker, P.A., Sylva, S.P. 2014. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth and Planetary Science Letters 408, 263-271. http://doi.org/10.1016/j.epsl.2014.10.024.
  • Glasser, N.F., Clemmens, S., Schnabel, C., Fenton, C.R., McHargue, L. 2009. Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10Be dating. Quaternary Science Reviews 28 (27-28), 3448-3458. http://doi.org/10.1016/j.quascirev.2009.10.006.
  • Hall, S. R, Farber, D.L., Ramage, J.M., Rodbell, D.T., Finkel, R.C., Smith, J.A., Mark, B.G., Kassel, C., 2009. Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quaternary Science Reviews 28 (25-26), 2991-3009. http://doi.org/10.1016/j.quascirev.2009.08.004.
  • Hastenrath, S. L. 1971. On the Pleistocene snow-line depression in the arid regions of the South American Andes. Journal of Glaciology 10 (59), 225-267. http://doi.org/https://doi.org/10.1017/S0022143000013228.
  • Herreros, J., Moreno, L., Taupin, J. D., Ginot, P., Patris, N., De Angelis, M., Ledru, M.P., Delachaux, F., Schotterer, U. 2009. Environmental records from temperature glacier ice on Nevado Coropuna saddle, southern Peru. Advances in Geosciences 22, 27-34. http://doi.org/10.5194/adgeo-22-27-2009.
  • Isacks, B. 1988. Uplift of the Central Andes Plateau and bending of the Bolivian Orocline. Journal of Geophysical Research 93 (B4), 3211-3231. http://doi.org/10.1029/JB093iB04p03211.
  • Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.H., Colose, C., Brunstein, D., He, F., Khodri, M., Bourlès, D.L., Leanni, I., Rinterknecht, V., Grancher, D., Francou, B., Ceballos, J.L., Fonseca, H., Liu, Z., Otto-Bliesner, B.L. 2014. A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513 (7517), 224-228. http://doi.org/10.1038/nature13546.
  • Kelly, M.A., Lowell, T.V., Applegate, P.J., Smith, C.A., Phillips, F.M., Hudson, A.M. 2012. Late glacial fluctuations of Quelccaya Ice Cap, southeastern Peru. Geology 40 (11), 991-994. http://doi.org/10.1130/G33430.1.
  • Klein, A.G., Seltzer, G.O., Isacks, B.L. 1999. Modern and Last Local Glacial Maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile. Quaternary Science Reviews 18 (1), 63-84. https://doi.org/10.1016/S0277-3791(98)00095-X. .
  • Kull, C., Imhof, S., Grosjean, M., Zech, R., Veit, H. 2008. Late Pleistocene Glaciation in the Central Andes: Temperature versus humidity control. -A case study from the eastern Bolivian Andes (17ºS) and regional synthesis. Global and Planetary Change 60 (1-2), 148-164. http://doi.org/10.1016/j.gloplacha.2007.03.011.
  • Lal, D. 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104 (2-4), 424-439. https://doi.org/10.1016/0012-821X(91)90220-C..
  • Lifton, N. A., Bieber, J. W., Clem, J. M., Duldig, M. L., Evenson, P., Humble, J. E., Pyle, R. 2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239 (1-2), 140-161.http://doi.org/10.1016/j.epsl.2005.07.001.
  • Mark, B.G., Seltzer, G.O., Rodbell, D.T., Goodman, A.Y. 2002. Rates of deglaciation during the last glaciation and Holocene in the Cordillera Vilcanota - Quelccaya ice cap region, Southeastern Peru. Quaternary Research 57 (3), 287-298. https://doi.org/10.1006/qres.2002.2320. .
  • Marrero, M. M., Phillips, F. M., Caffee, M. W., Gosse, J. C. 2016. CRONUS-Earth cosmogenic 36Cl calibration. Quaternary Geochronology 31, 199-219. http://doi.org/10.1016/j.quageo.2015.10.002.
  • May, J.H., Zech, J., Zech, R., Preusser, F., Argollo, J., Kubik, P.W., Veit, H. 2011. Reconstruction of a complex late Quaternary glacial landscape in the Cordillera de Cochabamba (Bolivia) based on a morphostratigraphic and multiple dating approach. Quaternary Research 76 (1), 106-118. http://doi.org/10.1016/j.yqres.2011.05.003.
  • Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., Arnold, J.R. 1989. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research 94 (B12), 17907-17915. http://doi.org/10.1029/JB094iB12p17907.
  • Phillips, F.M., Stone, W.D., Fabryka-Martin, J.T. 2001. An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology 175 (3-4), 689-701. http://doi.org/10.1016/S0009-2541(00)00329-6.
  • Phillips, F.M. 2003. Cosmogenic 36Cl ages of Quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53 (3-4), 199-208. http://doi.org/10.1016/S0169-555X(02)00328-8.
  • Placzek, C.J., Quade, J., Patchett, P.J. 2013. A 130 ka reconstruction of rainfall on the Bolivian Altiplano. Earth and Planetary Science Letters 363, 97-108. http://doi.org/10.1016/j.epsl.2012.12.017.
  • Rodbell, D.T. 1993. The timing of the last deglaciation in Cordillera Oriental, northern Peru based on glacial geology and lake sedimentology. Geological Society of America Bulletin 105 (7), 923-934. http://doi.org/10.1130/0016-7606(1993)105<0923:TTOTLD>2.3.CO;2.
  • Sagredo, E.A., Lowell, T.V. 2012. Climatology of Andean glaciers: A framework to understand glacier response to climate change. Global and Planetary Change 86-87, 101- 109. http://doi.org/10.1016/j.gloplacha.2012.02.010.
  • Schimmelpfennig, I. 2009. Cosmogenic 36Cl in Ca and K Rich Minerals: Analytical Developments, Production Rate Calibrations and Cross Calibration with 3He and 21Ne. Ph.D. Thesis, Paul Cezanne Aix-Marseille III University, Aix en Provence, France. https://hal.inria.fr/file/index/docid/468337/filename/PhD_Schimmelpfennig.pdf.
  • Schimmelpfennig, I., Benedetti, L., Finkel, R., Pik, R., Blard, P.H., Bourlès, D., Burnard, P., Williams, A. 2009. Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quaternary Geochronology 4 (6), 441- 461. http://doi.org/10.1016/j.quageo.2009.06.003.
  • Schimmelpfennig, I., Benedetti, L., Garreta, V., Pik, R., Blard, P.H., Burnard, P., Bourlès, D., Finkel, R., Ammon, K., Dunai, T. 2011. Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38ºN, Italy) and Payun Matru (36ºS, Argentina). Geochimica et Cosmochimica Acta 75 (10), 2611-2632. http://doi.org/10.1016/j.gca.2011.02.013.
  • Schimmelpfennig, I., Schaefer, J.M., Putnam, A.E., Koffman, T., Benedetti, L., Ivy-Ochs, S., Team, A., Schlüchter, Ch. 2014. 36Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). Journal of Quaternary Science 29 (5), 407- 413. http://doi.org/10.1002/jqs.2720.
  • Seltzer, G., Rodbell, D., Burns, S., 2000. Isotopic evidence for late Quaternary climate change in tropical South America. Geology 28 (1), 35-38. https://doi.org/10.1130/0091-7613(2000)28<35:IEFLQC>2.0.CO;2.
  • Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., Dunbar, R. B. 2002. Early Warming of Tropical South America at the Last Glacial- Interglacial Transition. Science 296 (5573), 1.685-1.686. http://doi.org/10.1126/science.1070136.
  • Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., Finkel, R.C. 2005. Early local Last Glacial Maximum in the tropical Andes. Science 308 (5722), 678-681. https://doi.org/10.1126/science.1107075.
  • Smith, J.A., Mark, B.G., Rodbell, D.T. 2008. The timing and magnitude of mountain glaciation in the tropical Andes. Journal of Quaternary Science 23, 609-634. http://doi.org/10.1002/jqs.1224.
  • Smith, C.A., Lowell, T.V., Caffee, M.W. 2009. Late glacial and Holocene cosmogenic surface exposure age glacial chronology and geomorphological evidence for the presence of cold-based glaciers at Nevado Sajama, Bolivia. Journal of Quaternary Science 24 (4), 360-372. http://doi.org/10.1002/jqs.1239.
  • Smith, C.A., Lowell, T.V., Owen, L.A., Caffe, M.W. 2011. Late Quaternary glacial chronology on Nevado Illimani, Bolivia, and the implications for paleoclimatic reconstructions across the Andes. Quaternary Research 75 (1), 1-10. http://doi.org/10.1016/j.yqres.2010.07.001.
  • Stansell, N.D., Rodbell, D., Licciardi, J.M., Sedlak, C.M., Schweinsberg, A.D., Huss, E.G., Delgado, G.M., Zimmerman, S.H., Finkel, R.C. 2015. Late Glacial and Holocene glacier fluctuations at Nevado Huaguruncho in the Eastern Cordillera of the Peruvian Andes. Geology 43 (8), 747-750. https://doi.org/10.1130/G36735.1.
  • Stern, C.R. 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 2, 161-206. http://doi.org/10.4067/S0716-02082004000200001.
  • Stone, J.O., Allan, G.L., Fifield, L.K., Cresswell, R.G. 1996. Cosmogenic Chlorine-36 from calcium spallation. Geochimica et Cosmochimica Acta 60 (4), 679-692. https://doi.org/10.1016/0016-7037(95)00429-7.
  • Stone, J.O. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105 (B10), 23753-23759. http://doi.org/10.1029/2000JB900181.
  • Stone, J.O., Fifield, K., Vasconcelos, P. 2005. Terrestrial chlorine-36 production from spallation of iron. 10th International Conference on Accelerator Mass Spectrometry. Berkeley, USA. https://llnl.confex.com/llnl/ams10/techprogram/P1397.HTM.
  • Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.N., Henderson, K.A., Coledai, J., Bolzan, J.F., Liu, K.B. 1995. Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269 (5220), 46-50. https://doi.org/10.1126/science.269.5220.46.
  • Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B. 1998. A 25,000-Year Tropical Climate History from Bolivian Ice Cores. Science 282 (5395), 1858-1864. https://doi.org/10.1126/science.282.5395.1858.
  • Thouret, J. C., Rivera, M., Wörner, G., Gerbe, M. C., Finizola, A., Fornari, M., Gonzales, K. 2005. Ubinas: the evolution of the historically most active volcano in southern Peru. Bulletin of Volcanology 67 (6), 557-589. http://doi.org/10.1007/s00445-004-0396-0.
  • Úbeda, J., Palacios, D., Vázquez-Selem, L. 2012. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating. Geophysical Research Abstracts 14, EGU2012-3683-2, 2012. http://meetingorganizer.copernicus.org/EGU2012/EGU2012-3683-2.pdf.
  • Vermeesch, P. 2007. CosmoCalc: an excel add-in for cosmogenic nuclide calculations. Geochemistry, Geophysics, Geosystems 8 (8), 1525-2027. http://doi.org/10.1029/2006GC001530.
  • Zech, R., Kull, C.H., Kubik, P.W., Veit, H. 2007a. Exposure dating of Late Glacial and pre-LGM moraines in the Cordon de Doña Rosa, Northern/Central Chile (31º S). Climate of the Past 3 (1), 1-14. http://doi.org/10.5194/cp-3-1-2007.
  • Zech, R., Kull, C.H., Kubik, P.W., Veit, H. 2007b. LGM and Late Glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia) deduced from 10Be surface exposure dating. Climate of the Past 3 (4), 623-635. http://doi.org/10.5194/cp-3-623-200.
  • Zreda, M., England, J., Phillips, F.M., Elmore, D., Sharma, P. 1999. Unblocking of the Nares Strait by Greenland and Ellesmere ice-sheet retreat 10,000 years ago. Nature 398, 139-142. http://doi.org/10.1038/18197.