Evaluating Techniques for Neuron Identification in Complex Cultures: A Deep Learning Approach

  1. Puerta, Paula 1
  2. Ozturk, Berke 1
  3. González, Víctor M. 1
  4. Villar, José R. 1
  5. Serrano Pertierra, Esther 1
  6. Antonello Novelli 1
  7. M. Teresa Fernández-Sánchez 1
  8. Ángel Río-Álvarez 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Book:
CASEIB 2023. Libro de Actas del XLI Congreso Anual de la Sociedad Española de Ingeniería Biomédica: Contribuyendo a la salud basada en valor
  1. Joaquín Roca González (coord.)
  2. Dolores Ojados González (coord.)
  3. Juan Suardíaz Muro (coord.)

Publisher: Universidad Politécnica de Cartagena

ISBN: 978-84-17853-76-1

Year of publication: 2023

Pages: 464-467

Congress: Congreso Anual de la Sociedad Española de Ingeniería Biomédica. CASEIB (41. 2023. Cartagena)

Type: Conference paper

Abstract

Microscopy image analysis of neurons cultures represents a formidable challenge due to their complex structure because of the dynamic nature of neurite tissue development, the neuron movement, the morphological changes, and the pres- ence of many elements in the cultures apart from neurons such as glial cells, dead cells, vesicles, etc. A rigorous eval- uation of deep learning techniques to address this intricate problem is undertaken in this study. Several methodolo- gies, including Instance Segmentation and Object Detection models, are scrutinized within a comprehensive experimen- tal framework. The efficacy of the Instance Segmentation model is underscored by the findings, demonstrating superior quantitative results. Precise neuron quantification is facili- tated by this model through the detection of bounding boxes in images, thereby enabling the automation of tasks such as morphological and size analysis of neuronal cells and track- ing individual neurons across ...