Impacto del Jitter en un control de formación multiagente

  1. Anzola Anzola, John Petearson 1
  2. Simanca Herrera, Fredys Alberto 2
  3. García-Díaz, Vicente 3
  1. 1 Fundación Universitaria Los Libertadores
    info

    Fundación Universitaria Los Libertadores

    Bogotá, Colombia

    ROR https://ror.org/05pm0vd24

  2. 2 Universidad Cooperativa de Colombia
    info

    Universidad Cooperativa de Colombia

    Bogotá, Colombia

    ROR https://ror.org/04td15k45

  3. 3 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Any de publicació: 2024

Volum: 21

Número: 1

Pàgines: 17-28

Tipus: Article

DOI: 10.4995/RIAI.2023.19440 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resum

This article analyzes the characteristics of a WiFi wireless communication employing the TCP protocol, including its packetretransmission mechanisms and DCF. The focus of the study is the analysis of the influence of a non-priority medium accesscontrol scheme on centralized multi-agent robotic formation with a leader. Specifically, the impact of Jitter on formation control isexamined, as each packet transmitted by the leader agent contains critical information about its target position. Temporal variationsin the delivery of these packets can cause variations in the positions of the follower agents, which in turn can affect the maintenanceof the formation with some degree of error. Each robotic agent in the formation consists of a Pioneer 3-DX robot and a PID controllerthat enables it to move towards a target point under non-holonomic constraints. To analyze the impact of Jitter, a simulationenvironment is presented that incorporates external traffic sources as disturbance signals that vary the packet delivery, therebyaffecting the multi-agent robotic formation control.

Referències bibliogràfiques

  • Apriaskar, E., Fahmizal, F., Cahyani, I., Mayub, A., May 2020. Autonomous mobile robot based on BehaviourBased robotic using v-REP simulator-pioneer p3-DX robot. Jurnal Rekayasa Elektrika 16 (1). https://doi.org/10.17529/jre.v16i1.15081
  • Bhatia, A., Kumar, A., Jain, A., Kumar, A., Verma, C., Illes, Z., Aschilean, I., Raboaca, M. S., Nov. 2022. Networked control system with MANET communication and AODV routing. Heliyon 8 (11), e11678. https://doi.org/10.1016/j.heliyon.2022.e11678
  • Chen, L., Li, C., Guo, Y., Ma, G., Li, Y., Xiao, B., Sep. 2022. Formation-containment control of multi-agent systems with communication delays. ISA Transactions 128, 32-43. https://doi.org/10.1016/j.isatra.2021.09.012
  • Cheng, Y., Yang, D., Zhou, H., Wang, H., Jul. 2019. Adopting IEEE 802.11 MAC for industrial delay-sensitive wireless control and monitoring applications: A survey. Computer Networks 157, 41-67. https://doi.org/10.1016/j.comnet.2019.04.002
  • Choi, H.-H., Lee, J.-R., 2019. Local flooding-based on-demand routing protocol for mobile ad hoc networks. IEEE Access 7, 85937-85948. https://doi.org/10.1109/ACCESS.2019.2923837
  • Hu, D., Yang, S., Gong, M., Feng, Z., Zhu, X., Dec. 2022a. A cyber-physical routing protocol exploiting trajectory dynamics for mission-oriented flying ad hoc networks. Engineering 19, 217-227. https://doi.org/10.1016/j.eng.2021.10.022
  • Hu, J., Lennox, B., Arvin, F., Jun. 2022b. Robust formation control for networked robotic systems using negative imaginary dynamics. Automatica 140, 110235. https://doi.org/10.1016/j.automatica.2022.110235
  • Jiménez, A. C., Anzola, J. P., García-Díaz, V., González Crespo, R., Zhao, L., 07 2020. Pydslrep: A domain-specific language for robotic simulation in vrep. PLOS ONE 15 (7), 1-24. https://doi.org/10.1371/journal.pone.0235271
  • Kumar Gupta, A., Venkatesh, T., Jun. 2022. Design and analysis of IEEE 802.11 based full duplex WLAN MAC protocol. Computer Networks 210, 108933. https://doi.org/10.1016/j.comnet.2022.108933
  • Lin, J., Miao, Z., Zhong, H., Peng, W., Wang, Y., Fierro, R., Jul. 2021. Adaptive image-based leader-follower formation control of mobile robots with visibility constraints. IEEE Transactions on Industrial Electronics 68 (7), 6010-6019. https://doi.org/10.1109/TIE.2020.2994861
  • Manzoor, S., Yin, Y., Gao, Y., Hei, X., Cheng, W., 2020. A systematic study of IEEE 802.11 DCF network optimization from theory to testbed. IEEE Access 8, 154114-154132. https://doi.org/10.1109/ACCESS.2020.3018088
  • Peng, J., 2018. Network state conservation in dynamic spectrum access: the IEEE 802.11 DCF case. Procedia Computer Science 134, 275-282. https://doi.org/10.1016/j.procs.2018.07.171
  • Sánchez-Sánchez, P., Arteaga-Pérez, M. A., Sep. 2020. Control de posici'on y fuerza con estimaci'on de masa para sistemas cooperativos. Revista Iberoamericana de Automática e Informática industrial 17 (4), 368. https://doi.org/10.4995/riai.2020.12432
  • Tardioli, D., Parasuraman, R., O¨ gren, P., Jan. 2019. Pound: A multi-master ROS node for reducing delay and jitter in wireless multi-robot networks. Robotics and Autonomous Systems 111, 73-87. https://doi.org/10.1016/j.robot.2018.10.009
  • William, P., Pawar, A., Jawale, M., Badholia, A., Verma, V., Dec. 2022. Energy efficient framework to implement next generation network protocol using ATM technology. Measurement: Sensors 24, 100477. https://doi.org/10.1016/j.measen.2022.100477
  • Zheng, G., Zhi-Jun, Y., Min, H., Wen-Hua, Q., Jan. 2018. Energy-efficient analysis of an IEEE 802.11 PCF MAC protocol based on WLAN. Journal of Ambient Intelligence and Humanized Computing 10 (5), 1727-1737. https://doi.org/10.1007/s12652-018-0684-8
  • Zhou, X., Li, D., Zhang, L., Duan, Q., Aug. 2021. Application of an adaptive PID controller enhanced by a differential evolution algorithm for precise control of dissolved oxygen in recirculating aquaculture systems. Biosystems Engineering 208, 186-198. https://doi.org/10.1016/j.biosystemseng.2021.05.019