Using Grip Strength as a Cardiovascular Risk Indicator Based on Hybrid Algorithms
- E. F. Bareño-Castellanos 1
- P. A. Gaona-García 1
- J. E. Ortiz-Guzmán 2
- C. E. Montenegro-Marin 1
- 1 Faculty of Engineering, Universidad Distrital Francisco José de Caldas, Bogotá (Colombia)
- 2 Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales, Bogotá (Colombia)
ISSN: 1989-1660
Año de publicación: 2021
Volumen: 7
Número: 2
Páginas: 27-33
Tipo: Artículo
Otras publicaciones en: IJIMAI
Resumen
This article shows the application and design of a hybrid algorithm capable of classifying people into risk groups using data such as prehensile strength, body mass index and percentage of fat. The implementation was done on Python and proposes a tool to help make medical decisions regarding the cardiovascular health of patients. The data were taken in a systematic way, k-means and c-means algorithms were used for the classification of the data, for the prediction of new data two vectorial support machines were used, one for the k-means and the other for the c-means, obtaining as a result a 100% of precision in the vectorial support machine with c-means and a 92% in the one of k-means.
Referencias bibliográficas
- H. Wang et al., “Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015,” The Lancet, vol. 388, no. 10053, pp. 1459–1544, 2016, doi: 10.1016/S0140-6736(16)31012-1.
- D. Mercy et al., “Riesgo cardiovascular global y edad vascular: herramientas claves en la prevención de enfermedades cardiovasculares Global cardiovascular risk and vascular age : key tools in cardiovascular diseases prevention,” Revista Médica Electrónica, Artic. Revisión, pp. 211–226, 2014.
- O. Prasitsiriphon and W. Pothisiri, “Associations of Grip Strength and Change in Grip Strength With All-Cause and Cardiovascular Mortality in a European Older Population,” Clinical Medicine Insights: Cardiology, vol. 12, 2018, doi: 10.1177/1179546818771894.
- C. A. Celis-Morales et al., “Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants,” BMJ (Online), vol. 361, pp. 1–10, 2018, doi: 10.1136/bmj.k1651.
- M. D. Howard LeWine, “Grip strength may provide clues to heart health - Harvard Health Blog - Harvard Health Publishing,” Grip strength may provide clues to heart health, 19-May-2015. [Online]. Available: https://www.health.harvard.edu/blog/grip-strength-may-provide-clues-toheart-health-201505198022. [Accessed: 03-Jul-2020].
- A. Rairikar, V. Kulkarni, V. Sabale, H. Kale, and A. Lamgunde, “Heart disease prediction using data mining techniques,” Proceedings of 2017 International Conference on Intelligent Computing and Control, I2C2 2017, vol. 2018-Janua, no. October, pp. 1–8, 2018, doi: 10.1109/I2C2.2017.8321771.
- B. Bahrami and M. Hosseini Shirvani, “Prediction and Diagnosis of Heart Disease by Data Mining Techniques,” Journal of Multidisciplinary Engineering Science and Technology, vol. 2, no. 2, pp. 3159–40, 2015.
- R. W. Bohannon, “Grip strength: An indispensable biomarker for older adults,” Clinical Interventions in Aging, vol. 14, pp. 1681–1691, 2019, doi: 10.2147/CIA.S194543.
- sevtap güllüoğlu badıl, “Does Vitamin D Level Affect Grip Strength: a Cross-sectional Descriptive Study,” Erciyes Medical Journal, vol. 42, no. 1, pp. 7–11, 2019, doi: 10.14744/etd.2019.15428.
- D. P. Leong et al., “Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study,” The Lancet, vol. 386, no. 9990, pp. 266–273, 2015, doi: 10.1016/S0140-6736(14)62000-6.
- B. Deekshatulu and P. Chandra, “Classification of heart disease using artificial neural network and feature subset selection,” Global Journal of Computer Science and Technology, vol. 13, no. 3, 2013.
- M. A. jabbar, B. L. Deekshatulu, and P. Chandra, “Classification of Heart Disease Using K- Nearest Neighbor and Genetic Algorithm,” Procedia Technology, vol. 10, pp. 85–94, 2013, doi: 10.1016/j.protcy.2013.12.340.
- C. Sowmiya, “Comparative Study of Predicting Heart Disease By Means Of Data Mining,” Int. J. Eng. Comput. Sci., vol. 5, no. 12, pp. 19580–19582, 2016.
- N. Gawande and A. Barhatte, “Heart diseases classification using convolutional neural network,” Proceedings of the 2nd International Conference on Communication and Electronics Systems, ICCES 2017, vol. 2018-Janua, no. Icces, pp. 17–20, 2018, doi: 10.1109/CESYS.2017.8321264.
- M. S. Amin, Y. K. Chiam, and K. D. Varathan, “Identification of significant features and data mining techniques in predicting heart disease,” Telematics and Informatics, vol. 36, pp. 82–93, 2019, doi: 10.1016/j.tele.2018.11.007.
- F. López-Martínez, E. R. Núñez-Valdez, J. Lorduy Gomez, and V. GarcíaDíaz, “A neural network approach to predict early neonatal sepsis,” Computers and Electrical Engineering, vol. 76, pp. 379–388, 2019, doi: 10.1016/j.compeleceng.2019.04.015.
- F. López-Martínez, E. R. Núñez-Valdez, R. G. Crespo, and V. García-Díaz, “An artificial neural network approach for predicting hypertension using NHANES data,” Scientific Reports, vol. 10, no. 1, pp. 1–14, 2020, doi: 10.1038/s41598-020-67640-z.
- S. S. Devi, N. H. Singh, and R. H. Laskar, “Fuzzy C-Means Clustering with Histogram based Cluster Selection for Skin Lesion Segmentation using Non-Dermoscopic Images,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 1, p. 26, 2020, doi: 10.9781/ijimai.2020.01.001.
- F. López-Martínez, E. R. Núñez-Valdez, V. García-Díaz, and Z. Bursac, “A case study for a big data and machine learning platform to improve medical decision support in population health management,” Algorithms, vol. 13, no. 4, pp. 1–19, 2020, doi: 10.3390/A13040102.
- A. Roohi, K. Faust, U. Djuric, and P. Diamandis, “Unsupervised Machine Learning in Pathology: The Next Frontier,” Surgical Pathology Clinics, vol. 13, no. 2, pp. 349–358, 2020, doi: 10.1016/j.path.2020.01.002.
- S. K. Majhi and S. Biswal, “Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer,” Karbala International Journal of Modern Science, vol. 4, no. 4, pp. 347–360, 2018, doi: 10.1016/j.kijoms.2018.09.001.
- V. Manikandan, V. Porkodi, A. S. Mohammed, and M. Sivaram, “Ensemble Classification Based Microarray Gene Retrieval System,” ICTACT Journal on Soft Computing, vol. 9, no. 1, pp. 1806–1812, 2018, doi: 10.21917/ijsc.2018.0252.
- R. Pitale, K. Tajane, and J. Umale, “Heart Rate Variability Classification and Feature Extraction Using Support Vector Machine and PCA: An Overview,” Journal of Engineering Research and Applications www.ijera. com, vol. 4, no. 1, pp. 381–384, 2014.
- J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Information Sciences, vol. 507, pp. 772–794, 2020, doi: 10.1016/j.ins.2019.06.064.
- L. Alberto Cardozo, L. Alberto, C. Guzman, Y. Andrés, M. Torres, and J. Alejandro, “Artículo Original Porcentaje de grasa corporal y prevalencia de sobrepeso-obesidad en estudiantes universitarios de rendimiento deportivo de Bogotá, Colombia Body fat percentage and prevalence of overweight-obesity in college students of sports performanc,” Nutrición clínica y dietética hospitalaria, vol. 36, no. 3, pp. 68–75, 2017, doi: 10.12873/363cardozo.
- M. E. Piché, P. Poirier, I. Lemieux, and J. P. Després, “Overview of Epidemiology and Contribution of Obesity and Body Fat Distribution to Cardiovascular Disease: An Update,” Progress in Cardiovascular Diseases, vol. 61, no. 2, pp. 103–113, 2018, doi: 10.1016/j.pcad.2018.06.004.
- C. M. Hernández-Ruiz, S. A. Villagrán Martínez, J. E. Ortiz Guzmán, and P. A. Gaona Garcia, “Model based on support vector machine for the estimation of the heart rate variability,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11140 LNCS, pp. 186–194, 2018, doi: 10.1007/978-3-030-01421-6_19.