Biomedical Signal Processing and Artificial Intelligence in EOG Signals

  1. López, Alberto 1
  2. Ferrero, Francisco 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Libro:
Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning

ISBN: 9783031232381 9783031232398

Año de publicación: 2023

Páginas: 185-206

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-031-23239-8_8 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Electrooculography is a technique that detects and analyses eye movement based on electrical potentials recorded using electrodes placed around the eyes. The electrical signal recorded is named electrooculogram (EOG) and can be used as an alternative input for medical and human-computer interface systems. To implement an eye movement-based system, at least four main stages will be required: signal denoising, feature extraction, signal classification and decision-making. The first one after the EOG signal acquisition is signal denoising, which suppresses noise that could not be removed by the analogue filters. In this task, the slope of the signal edges, as well as the amplitudes of the signal to distinguish between different eye movements, must be preserved. After denoising, the second task is to extract the features of the EOG signal based mainly on the detection of saccades, fixations, and blinks. The next stage is the automatic identification of eye movements. This task, called signal classification, is essential for generating accurate commands, especially in real-time applications. This classification is carried out mainly using a combination of algorithms in artificial intelligence (AI). These types of algorithms are the most suitable for adaptive systems that require real-time decision-making supported by AI techniques. In some applications, EOG modelling, and compression are also applied as an additional signal processing stage.

Referencias bibliográficas

  • E. Kowler, Eye movements: The past 25 years. Vis. Res. 51(13), 1457–1483 (2011). https://doi.org/10.1016/j.visres.2010.12.014
  • A. López, F.J. Ferrero, D. Yangüela, C. Álvarez, O. Postolache, Development of a computer writing system based on EOG. Sensors 17, 1505 (2017). https://doi.org/10.3390/s17071505
  • A. López, M. Fernández, H. Rodríguez, F.J. Ferrero, O. Postolache, Development of an EOG-based system to control a computer serious game. Measurement 127, 481–488 (2018). https://doi.org/10.1016/j.measurement.2018.06.017
  • G. Teng, Y. He, H. Zhao, D. Liu, J. Xiao, S. Rankumar, Design and development of human computer interface using electrooculogram with deep learning. Artif. Intell. Med. 102, 101765 (2021). https://doi.org/10.1016/j.artmed.2019.101765
  • Q. Huang, S. He, Q. Wang, Z. Gu, N. Peng, K. Li, Y. Zhang, M. Shao, Y. Li, An EOG-based human–machine interface for wheelchair control. IEEE Trans. Biomed. Eng. 65(9), 2023–2032 (2017). https://doi.org/10.1109/tbme.2017.2732479
  • R. Zhang, S. He, X. Yang, X. Wang, K. Li, Q. Huang, Z. Yu, X. Zhang, D. Tang, Y. Li, An EOG-based human-machine interface to control a smart home environment for patients with severe spinal cord. IEEE Trans. Biomed. Eng. 66(1), 89–100 (2018). https://doi.org/10.1109/tbme.2018.2834555
  • F.D. Pérez-Reynoso, L. Rodríguez-Guerrero, J.C. Salgado-Ramírez, R. Ortega-Palacios, Human–machine interface: multiclass classification by machine learning on 1D EOG Signals for the Control of an Omnidirectional Robot. Sensors 21(17), 5882 (2021). https://doi.org/10.3390/s21175882
  • F. Fang, T. Shinozaki, Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems. PLOS One 13(2), e0192684 (2018). https://doi.org/10.1371/journal.pone.0192684
  • D. Kumar, K. Priyadharsini, Analysis of CNN model based classification of diabetic retinopathy diagnosis, in Proceedings of International Conference on Secure Cyber Computing and Communication (ICSCCC), (2021)
  • A. López, F.J. Ferrero, O. Postolache, An affordable method for evaluation of ataxic disorders based on electrooculographic signals. Sensors 19, 3756 (2019). https://doi.org/10.3390/s19173756
  • R.A. Becerra-García, R.V. García-Bermúdez, G. Joya-Caparrós, A. Fernández-Higuera, C. Velázquez-Rodríguez, M. Velázquez-Mariño, F.R. Cuevas-Beltrán, F. García-Lagos, R. Rodríguez-Labrada, Data mining process for identification of non-spontaneous saccadic movements in clinical electrooculography. Neurocomputing 250, 28–36 (2017). https://doi.org/10.1016/j.neucom.2016.10.077
  • R.J. Leigh, D.S. Zee, The neurology of eye movements. Encyclopedia of biomedical engineering, 5th edn. (Oxford, New York USA, 2015)
  • PowerLab 26 Series. ADInstruments. [Online]. Available: https://www.adinstruments.com/products/powerlab/35-and-26-series
  • BlueGain Cambridge Research Systems. BlueGain EOG Biosignal Amplifier. [Online]. Available: http://www.crsltd.com/tools-for-vision-science/eye-tracking/bluegain-eog-biosignal-amplifier/
  • ActiveTwo AD-box. Biosemi. [Online]. Available: https://www.biosemi.com/ad-box_activetwo.htm
  • g.USBAMP Research. G.Tec. [Online]. Available: https://www.gtec.at/product/gusbamp-research/
  • C. Velázquez-Rodríguez, R.V. García-Bermudez, F. Rojas-Ruiz, R. Becerra-García, Automatic glissade determination through a mathematical model in electrooculographic records, in Proceedings of Lecture Notes in Computer Science, (2017)
  • A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, Physiobank. Physiotool. Physionet Circulat. 101(23), e215–e220 (2000). https://doi.org/10.1161/01.cir.101.23.e215
  • G.Q. Zhang, L. Cui, R. Mueller, S. Tao, M. Kim, M. Rueschman, S. Mariani, D. Mobley, S. Redline, The national sleep research resource: towards a sleep data communications. J. Am. Med. Inform. Assoc. 25(10), 1351–1358 (2008). https://doi.org/10.1093/jamia/ocy064
  • C. O’Reilly, N. Gosselin, J. Carrier, T. Nielsen, Montreal archive of sleep studies: An open-access resource for instrument benchmarking & exploratory research. J. Sleep Res. 1(24), 628–635 (2014). https://doi.org/10.1111/jsr.12169
  • A. Sterr, J.K. Ebajemito, K.B. Mikkelsen, M.A. Bonmati-Carrion, N. Santhi, C. Della Monica, L. Grainger, G. Atzori, V. Revell, S. Debener, D.J. Dijk, M. De Vos, Sleep EEG derived from behind-the-ear electrodes (ceegrid) compared to standard polysomnography: A proof of concept study. Front. Hum. Neurosci. 12(452), 1–9 (2018). https://doi.org/10.3389/fnhum.2018.00452
  • M. Rezaei, H. Mohammadi, H. Khazaie, EEG/EOG/EMG data from a cross sectional study on psychophysiological insomnia and normal sleep subjects. Mendeley Data V4 (2017). https://doi.org/10.17632/3hx58k232n.4
  • N. Barbara, T.A. Camilleri, K.P. Camilleri, A comparison of EOG baseline drift mitigation techniques. Biomed. Sign. Proces. Cont. 57(540), 101738 (2020). https://doi.org/10.1016/j.bspc.2019.101738
  • A. Banerjee, A. Konar, D.A. Timbarewala, R. Janarthanan, Detecting eye movement direction from stimulated electro-oculogram by Intelligent Algorithms, in Proceedings of International Conference on Computing Communication & Networking Technologies (ICCCNT), (2012)
  • A. López, F.J. Ferrero, J.R. Villar, EOG signal compression using turning point algorithm, in Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (2021)
  • R. Boostani, F. Karimzadeh, M. Nami, A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Prog. Biomed. 140, 77–91 (2017). https://doi.org/10.1016/j.cmpb.2016.12.004
  • K. Mehta, A Review on different methods of EOG signal analysis. Internat. J. Innovat. Res. Sci. Eng. Technol. 5(2), 1862–1865 (2016). https://doi.org/10.15680/IJIRSET.2016.0502128
  • A. Banerjee, S. Dattab, M. Palb, A. Konarb, Tibarewalaa, DN Janarthananc R Classifying electrooculogram to detect directional eye movements, in Proceedings of International Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA), (2013)
  • S. D’Souza, N. Sriraam, Statistical based analysis of electrooculogram (EOG) signals: A Pilot Study. Internat. J. Biomed. Clin. Eng. 2(1), 12–25 (2013). https://doi.org/10.4018/ijbce.2013010102
  • A. López, F.J. Ferrero, S.M. Qaisar, O. Postolache, Gaussian mixture model of saccadic eye movements, in Proceedings of Medical Measurements and Applications (MeMeA), (2022)
  • H. Wang, C. Wu, T. Li, Y. He, P. Chen, A. Bezerianos, Driving fatigue classification based on fusion entropy analysis combining EOG and EEG. IEEE Access 7, 61975–61986 (2019). https://doi.org/10.1109/ACCESS.2019.2915533
  • G.R.M. Babu, S. Gopinath, E. Arunkumar, An intelligent EOG system using fractal features and neural networks. Test Eng. Manag. 83, 9920–9925 (2020)
  • S. Mala, K. Latha, Feature selection in categorizing activities by eye movements using electrooculograph signals, in Proceedings of Science Engineering and Management Research (ICSEMR), (2014)
  • C. Ding, H. Peng, Minimum redundancy feature selection from microarray gene expression data. J. Bioinforma. Comput. Biol. 3(2), 185–205 (2005). https://doi.org/10.1142/S0219720005001004
  • S. Mala, K. Latha, Efficient Classification of EOG using CBFS feature selection algorithm, in Proceedings of International Conference on Emerging Research in Computing Information, Communication and Applications (ERCICA), (2013)
  • C.-E. Kuo, G.-T. Chen, Automatic Sleep staging based on a hybrid stacked LSTM Neural Network Verification Using Large-Scale Dataset. IEEE Access 8, 111837–111849 (2020). https://doi.org/10.1109/ACCESS.2020.3002548
  • Z. Lv, X.-P. Wu, M. Li, D.-X. Zhang, Development of a human computer interface system using EOG. Health 1(1), 39–46 (2009). https://doi.org/10.4236/health.2009.11008
  • P. Babita Syal, P. Kumari, Comparative analysis of KNN, SVM, DT for EOG based human computer interface, in Proceedings of International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), (2017)
  • M.M. Rahman, M.I.H. Bhuiyan, A.R. Hassanb, Sleep stage classification using single-channel EOG. Comput. Biol. Med. 102, 211–220 (2018). https://doi.org/10.17605/OSF.IO/SCGJX
  • F. Anis, M. Mustafa, N. Sulaiman, M. Rashid, B. Sama, M. Islam, M. Hasan, N. Ali, The classification of Electrooculogram (EOG) through the application of Linear discriminant analysis (LDA) of selected time-domain signals, in Proceedings of Innovative Manufacturing, Mechatronics & Materials Forum (IM3F), (2020)
  • F. Aziz, H. Arof, N. Mokhtar, M. Mubin, HMM based automated wheelchair navigation using EOG traces in EEG. J. Neural Eng. 11(5), 1–11 (2014). https://doi.org/10.1088/1741-2560/11/5/056018
  • N. Flad, T. Fomina, H. Buelthoff, L. Chuang, Unsupervised clustering of EOG as a viable substitute for optical eye tracking, in Proceedings of Eye Tracking and Visualization (ETVIS), (2015)
  • Z. Lv, X.P. Wu, M. Li, D. Zhang, A novel eye movement detection algorithm for EOG driven human computer interface. Pattern Recogn. Lett. 31(9), 1041–1047 (2010). https://doi.org/10.1016/j.patrec.2009.12.017
  • L. Jia, N. Alias, Comparison of ANN and SVM for classification of eye movements in EOG signals. J. Phys. 971, 1–11 (2018). https://doi.org/10.1088/1742-6596/971/1/012012
  • M. Jurczak, M. Kolodziej, A. Majkowski, Implementation of a convolutional neural network for eye blink artifacts removal from the electroencephalography signal. Front. Neurosci. 16, 782367 (2022). https://doi.org/10.3389/fnins.2022.782367
  • X. Zhu, W.L. Zheng, B.L. Lu, X. Chen, S. Chen, C. Wang, EOG-based drowsiness detection using convolutional neural networks, in Proceedings of International Joint Conference on Neural Networks (IJCNN), (2014)
  • A. Erfanian, B. Mahmoudi, Real-time ocular artifact suppression using recurrent neural network for electro-encephalogram based brain-computer interface. Med. Biol. Eng. Comput. 43, 296–305 (2005). https://doi.org/10.1007/BF02345969
  • M. Dutt, M. Goodwin, C.W. Omlin, Automatic sleep stage identification with time distributed convolutional neural network, in Proceedings of International Joint Conference on Neural Networks (IJCNN), (2021)
  • B. Xia, Q. Li, J. Jia, J. Wang, U. Chaudhary, A. Ramos-Murguialday, N. Birbaumer, Electrooculogram based sleep stage classification using deep belief network, in Proceedings of International Joint Conference on Neural Networks (IJCNN), (2017)
  • P. Kawde, G.K. Verma, Deep belief network based affect recognition from physiological, in Proceedings of Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), (2017)
  • I. Niroshana, X. Zhu, Y. Chen, W. Chen, Sleep stage classification based on EEG, EOG, and CNN-GRU deep learning model, in Proceedings of IEEE International Conference on Awareness Science and Technology (iCAST), (2019)
  • N.M.M. Noor, S. Ahmad, Implementation of Fuzzy logic controller for wheelchair motion control based on EOG data. Appl. Mech. Mater. 661, 183–189 (2014). https://doi.org/10.4028/www.scientific.net/amm.661.183
  • M.T. Hellyara, E.C. Ifeachora, D.J. Mappsa, E.M. Allen, N.R. Hudson, Expert system approach to electroencephalogram signal processing. Knowl.-Based Syst. 8(4), 164–175 (1995). https://doi.org/10.1016/0950-7051(95)96213-B
  • T.G. Chang, J.R. Smith, J.C. Principe, An expert system for multichannel sleep EEG/EOG signal analysis. ISA Trans. 28(1), 45–51 (1989). https://doi.org/10.1016/0019-0578(89)90056-6
  • I. Watson, F. Marir, Case-based reasoning: A review (Cambridge University, 2009)
  • S. Barua, S. Begum, M.U. Ahmed, P. Funk, Classification of ocular artifacts in EEG signals using hierarchical clustering and case-based reasoning, in Proceedings of International Conference on Case-Based Reasoning (ICCBR), (2014)
  • H.B. Abdessalem, A. Byrns, C. Frasson, Optimizing Alzheimer’s disease therapy using a neural intelligent agent-based platform. International Journal of Biosensors & Bioelectronics. Inter. J. Biosens. Bioelectron. 11(2), 70–96 (2021). https://doi.org/10.4236/ijis.2021.112006
  • T.P. Filgueiras, P.B. Filho, Intelligent agents in biomedical engineering: a systematic review. Inter. J. Biosens. Bioelectron. 6(5), 123–128 (2020). https://doi.org/10.15406/ijbsbe.2020.06.00200
  • H. Phan, O.Y. Chén, P.K. Zongqing, I. McLoughlin, A. Mertins, M. De Vos, Towards more accurate automatic sleep staging via deep transfer learing. IEEE Trans. Biomed. Eng. 68(6), 1787–1798 (2021). https://doi.org/10.1109/TBME.2020.3020381
  • J. Perdiz, L. Garrote, G. Pires, U.J. Nunes, A Reinforcement learning assisted eye-driven computer game employing a decision tree-based approach and CNN classification. IEEE Access 9, 46011–46021 (2021). https://doi.org/10.1109/ACCESS.2021.3068055
  • L. Garrote, J. Perdiz, G. Pires, U. Nunes, Reinforcement learning motion planning for an EOG-centered robot assisted navigation in a virtual environment, in Proceedings of IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), (2019)
  • P. Zhang, M. Ito, S.-I. Ito, M. Fukumi, Implementation of EOG mouse using Learning vector quantization and EOG-feature based methods, in Proceedings of Conference on Systems, Process & Control (ICSPC), (2013)