The Effect of Phytohormones and Inhibitors on Apogamous Gametophytes of Dryopteris affinis ssp. affinis

  1. Granados, S.
  2. Rivera, A.
  3. Cañal, María Jesús
  4. Fernández, Helena
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Livre:
Ferns

ISBN: 9789811661693 9789811661709

Année de publication: 2022

Pages: 325-342

Type: Chapitre d'ouvrage

DOI: 10.1007/978-981-16-6170-9_15 GOOGLE SCHOLAR lock_openAccès ouvert editor

Objectifs de Développement Durable

Résumé

The fern Dryopteris affinis ssp. affinis exhibits a peculiar case of apomixis, in which an embryo develops from somatic cells of the prothallium (apogamy). The effect on vegetative and apogamous gametophyte development of 14 phytohormones and inhibitors of their biosynthesis or transport (HBTIs) was analyzed in homogenized gametophytes cultured in liquid Murashige and Skoog (MS) medium. The list includes balances of the auxins: indol-butyric (IBA) or naphthalene acetic (NAA), with the cytokinin 6-benzylaminopurine (BA); gibberellic acid (GA3), spermidine (S); the inhibitor of auxin polar transport N,1-naphthylthalamic acid (NPA); the inhibitor of GAs biosynthesis, flurprimidol (F); and the inhibitor of spermidine biosynthesis, cyclohexylamine (CHA).

Références bibliographiques

  • Atallah NM, Vitek O, Gaiti F et al (2018) Sex determination in Ceratopteris richardii is accompanied by transcriptome changes that drive epigenetic reprogramming of the young gametophyte. Genes Genomes Genet 8:2205–2214
  • Cordle AR, Irish EE, Cheng CL (2007) Apogamy induction in Ceratopteris richardii. Int J Plant Sci 168:361–369
  • Cordle AR, Bui LT, Irish EE, Cheng CL (2010) Laboratory-induced Apogamy and Apospory in Ceratopteris richardii. In: Fernández H, Kumar A, Revilla MA (eds) Working with Ferns. Issues and applications. Springer, New York, pp 25–36. ISBN 978-1-4419-7161-6
  • de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H, Bräutigam A, Carlsbecker A, Gould SB (2016) Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. New Phytologist 209(2):705–720. https://doi.org/10.1111/nph.13630
  • De-la-Peña C, Galaz-Avalos RM, Loyola-Vargas VM (2008) Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Mol Biotechnol 39:215–224
  • Dutra NT, Silveira V, de Azevedo IG, Gomes-Neto LR, Façanha AR, Steiner N, Guerra MP, Floh EIS, Santa-Catarina C (2013) Polyamines affect the cellular growth and structure of pro-embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiol Plant 148:121–132
  • Eeckhout S, Leroux O, Willats WGT, Popper ZA, Viane RLL (2014) Comparative glycan profiling of Ceratopteris richardii “C-Fern” gametophytes and sporophytes links cell-wall composition to functional specialization. Ann Bot 114:1295–1307
  • Ekrt L, Koutecký P (2016) Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Ann Bot 117:97–106
  • Elmore HW, Whittier DP (1975) The involvement of ethylene and sucrose in the inductive and developmental phases of apogamous bud formation in Pteridium gametophytes. Can J Bot 53:375–381
  • Fernández H, Revilla MA (2003) In vitro culture of ornamental ferns. Plant Cell Tissue Organ Cult 73:1–13
  • Fernández H, Bertrand A, Sánchez-Tamés R (1993) In vitro regeneration of Asplenium nidus L. from gametophytic and sporophytic tissue. Sci Hortic 56:71–77
  • Finnie JF, van Staden J (1987) Multiplication of the tree fern Cyathea dregei. HortSci 22:665
  • Grossmann J, Fernández H, Chaubey PM, Valdés AE, Gagliardini V, Cañal MJ, Russo G, Grossniklauss U (2017) Proteogenomic analysis greatly expands the identification of proteins related to reproduction in the apogamous fern Dryopteris affinis ssp affinis. Front Plant Sci 8:336
  • Grossniklaus U, Koltunow AM, Van Lookeren M (1998) A bright future for apomixis. Trends Plant Sci 3:415–416
  • Grusz AL (2016) A current perspective on apomixis in ferns. J Syst Evol 54:656–665
  • Grzyb M, Kalandyk A, Mikuła A (2018) Effect of TIBA, fluridone and salicylic acid on somatic embryogenesis and endogenous hormone and sugar contents in the tree fern Cyathea delgadii Sternb. Acta Physiol Plant 40:1
  • Hickok A, Kirilux RM (1984) Effects of auxins on gametophyte development and sexual differentiation in the fern Ceratopteris thalictroides (L.) Brongn. Bot Gaz 145:37–42
  • Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451
  • Jensen WA (1962) Botanical histohemistry: principles and practice. W.H. Freeman and Co., San Francisco, CA. ISBN 10:9383285257
  • Jha TB, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotechnol Rep 1:135–140
  • Johri M (2008) Hormonal regulation in green plant lineage families. Physiol Mol Biol Plants 14:23–38
  • Jones VAS, Dolan L (2012) The evolution of root hairs and rhizoids. Ann Bot 110:205–212
  • Jouzani GS, Sharafi R, Soheilivand S (2018) Fueling the future; plant genetic engineering for sustainable biodiesel production. Biofuel Res J 19:829–845
  • Kandemir N, Saygili İ (2015) Apomixis: new horizons in plant breeding. Turk J Agric For 39:549–556
  • Kato Y (1967) Physiological and morphogenetic studies of fern gametophytes and sporophytes in aseptic culture – VIII. Behaviour of Pteris vittata gametophytes on sugar and complex media in red light. Planta 77:127–134
  • Kazmierczak A (2010) Gibberellic acid and ethylene control male sex determination and development of Anemia phyllititdis gametophytes. In: Fernández H, Kumar A, Revilla A (eds) Working with Ferns. Issues and applications. Springer, New York, pp 49–66. ISBN 978-1-4419-7161-6
  • Klämbt D, Knauth B, Dittmann I (1992) Auxin dependent growth of rhizoids of Chara globularis. Physiol Plant 85:537–540
  • Klíma P, Laňková M, Zažímalová E (2016) Inhibitors of plant hormone transport. Protoplasma 253:1391–1404
  • Liu H-M, Dyer RJ, Guo Z-Y et al (2012) The evolutionary dynamics of apomixis in ferns: a case study from Polystichoid ferns. J Bot 2012:1–11
  • López RA, Renzaglia KS (2014) Multiflagellated sperm cells of Ceratopteris richardii are bathed in arabinogalactan proteins throughout development. Am J Bot 101:2052–2061
  • Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230
  • Makowski D, Rybczyński JJ, Mikula A, Klimaszewska K (2015) A simple way to overcome the recalcitrance of the water fern Ceratopteris thalictroides (L.) Brongn. to cryopreservation. Acta Soc Bot Pol 84:385–388
  • Menéndez V, Revilla MA, Bernard P, Gotor V, Fernández H (2006a) Gibberellins and antheridiogen on sex in Blechnum spicant L. Plant Cell Rep 25:1104
  • Menéndez V, Revilla MA, Fernández H (2006b) Growth and gender in the gametophyte of Blechnum spicant L. Plant Cell Tissue Organ Cult 86:47–53
  • Menéndez V, Villacorta NF, Revilla MA et al (2006c) Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins sp. affinis. Plant Cell Rep 25:85–91
  • Menéndez V, Revilla MA, Fal MA, Fernández H (2009) The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell Tissue Organ Cult 96:245–250
  • Menéndez V, Arbesú R, Somer M, Revilla MA, Fernández H (2010) From spore to sporophyte: how to proceed in vitro. In: Fernández H, Kumar A, Revilla MA (eds) Working with Ferns: Issues and applications. Springer, New York, pp 97–110. ISBN 978-1-4419-7161-6
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497
  • Rivera A, Cañal MJ, Grossniklaus U, Fernández H (2018a) The gametophyte of fern: born to reproduce. In: Fernández H (ed) Recent advances in fern research. Springer, New York, pp 3–20. ISBN 978-3-319-75102-3
  • Rivera A, Conde P, Cañal MJ, Fernández H (2018b) Biotechnology and apogamy in Dryopteris affinis ssp. affinis: the influence of tissue homogenization, auxins, cytokinins, gibberellic acid and polyamines. In: Fernández H (ed) Recent advances in Fern research. Springer, New York, pp 139–152. ISBN 978-3-319-75102-3
  • Rybczynski J, Tomiczak K, Grzyb M, Mikula A (2018) Morphogenic events in ferns: single and multicellular explants in Vitro. In: Fernández H (ed) Recent advances in Fern research. Springer, New York, pp 99–120. ISBN 978-3-319-75102-3
  • Salmi ML, Bushart TJ, Stout SC, Roux SJ (2005) Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. Genet Genomics Mol Evol 138:1734–1745
  • Salmi ML, Morris KE, Roux SJ, Porterfield DM (2007) Nitric oxide and cGMP signaling in calcium-dependent development of cell polarity in Ceratopteris richardii. Plant Physiol 144:94–104
  • Salmi ML, Bushart TJ, Roux S (2010) Cellular, molecular, and genetic changes during the development of Ceratopteris richardii gametophytes. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns. Issues and applications. Springer, New York, pp 11–24
  • Salvo E (1990) Guía de helechos de la Península Ibérica y Baleares. Ediciones Pirámide S.A, Madrid. ISBN 84-368-0548-8
  • Scanlon MJ (2003) The polar auxin transport inhibitor N -1- naphthylphthalamic acid disrupts leaf initiation , KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol 133:597–605
  • Shin J, Seo PJ (2018) Varying auxin levels induce distinct pluripotent states in callus cells. Front Plant Sci 9:1653
  • Somer M, Arbesú R, Menéndez V, Revilla MA, Fernández H (2010) Sporophyte induction studies in ferns in vitro. Euphytica 171:203–210
  • Su Y, Liu Y, Zhang X (2011) Auxin- cytokinin interaction regulates meristem development. Mol Plant 4:616–625
  • Suo J, Zhao Q, Zhang Z, Chen S, Cao J, Liu G, Wei X, Wang T, Yang C, Dai S (2015) Cytological and proteomic analyses of Osmunda cinnamomea germinating spores reveal characteristics of fern spore germination and rhizoid tip growth. Mol Cell Proteomics 14:2510–2534
  • Teale W, Palme K (2018) Naphthylphthalamic acid and the mechanism of polar auxin transport. J Exp Bot 69:303–312
  • Team Rs (2016) RStudio: integrated development for R. RStudio, Boston
  • Valledor L, Menéndez V, Cañal MJ, Revilla MA, Fernández H (2014) Proteomic approaches to sexual development mediated by antheridiogen in the fern Blechnum spicant L. Proteomics 14:2061–2071
  • Vijayakumar P, Datta S, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE4 ( RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. New Phytol 4:944–953
  • von Aderkas P (1984) Promotion of apogamy in Matteuccia struthiopteris, the ostrich fern. Am Fern J 74:1
  • Wada M (2007) The fern as a model system to study photomorphogenesis. J Plant Res 120:3–16
  • Whittier DP (1964a) The effect of sucrose on apogamy in Cyrtomium falcatum Presll. Amer Fern J 54:20–25
  • Whittier DP (1964b) The influence of cultural conditions on the induction of apogamy in Pteridium gametophytes. Am J Bot 51:730–736
  • Whittier DP, Steeves TA (1960) The induction of apogamy in the bracken fern. Can J Bot 38:925–930
  • Whittier DP, Steeves TA (1962) Further studies on induced apogamy in ferns. Can J Bot 40:1525–1531
  • Wyder S, Rivera A, Valdés AE, Gagliardini V, Cañal MJ, Fernández H, Grossniklaus U (2020) Plant physiology and biochemistry differential gene expression profiling of one- and two-dimensional apogamous gametophytes of the fern Dryopteris affinis ssp. affinis. Plant Physiol Biochem 148:302–311