Transfer Learning with Convolutional Neural Networks for Cider Apple Varieties Classification
- García Cortés, Silverio 1
- Menéndez Díaz, Agustín 1
- Oliveira Prendes, José Alberto 1
- Bello García, Antonio 1
-
1
Universidad de Oviedo
info
ISSN: 2073-4395
Año de publicación: 2022
Volumen: 12
Número: 11
Páginas: 2856
Tipo: Artículo
Otras publicaciones en: Agronomy
Resumen
Cider production requires detailed knowledge of the apple varieties used. Of the hundreds of varieties of cider and dessert apples in Spain, only a few are accepted for producing cider under the “Sidra de Asturias” protected designation of origin. The visual characteristics of many of these varieties are very similar, and only experts can distinguish them. In this study, an artificial intelligence system using Transfer Learning techniques was developed for classifying some Asturian apple varieties. The performance of several convolutional neural network architectures was compared for classifying an image database created by the authors that included nine of the most common apple varieties. The best overall accuracy (98.04%) was obtained with the InceptionV3 architecture, thus demonstrating the reliability of the classification system, which will be useful for all cider or apple producers.
Información de financiación
This study was funded by Project FUO-469-19 (Fundación de la Universidad de Oviedo) and co-financed by ENRG GESTIÓN EFICIENTE.Financiadores
-
Fundación Universidad de Oviedo and ENRG Gestión Eficiente
- FUO-469-19
Referencias bibliográficas
- Dapena-Fuente, E.; Blázquez Nogueiro, M.D. Descripción De Las Variedades De Manzana De La D.O.P. Sidra De Asturias; Serida: Villaviciosa, Asturias, Spain, 2009; pp. 11–56.
- Bhargava, A.; Bansal, A. Fruits and Vegetables Quality Evaluation Using Computer Vision: A Review. J. King Saud Univ.Comput. Inf. Sci. 2021, 33, 243–257.
- Hossain, M.S.; Al-Hammadi, M.; Muhammad, G. Automatic Fruit Classification Using Deep Learning for Industrial Applications. IEEE Trans. Ind. Informatics 2019, 15, 1027–1034.
- Li, Y.; Feng, X.; Liu, Y.; Han, X. Apple Quality Identification and Classification by Image Processing Based on Convolutional Neural Networks. Sci. Rep. 2021, 11, 16618.
- Zuñiga, E.N.; Gordillo, S.; Martínez, F.H. Approaches to Deep Learning-Based Apple Classification Scheme Selection. Int. J. Eng. Res. Technol. 2021, 14, 510–515.
- Shi, X.; Chai, X.; Yang, C.; Xia, X.; Sun, T. Vision-Based Apple Quality Grading with Multi-View Spatial Network. Comput. Electron. Agric. 2022, 195, 106793.
- Alhawas, N.; Tüfekci, Z. The Effectiveness of Transfer Learning and Fine-Tuning Approach for Automated Mango Variety Classification. Eur. J. Sci. Technol. 2022, 34, 344–353.
- Ghazi, M.; Yanikoglu, B.; Aptoula, E. Plant Identification Using Deep Neural Networks via Optimization of Transfer Learning Parameters. Neurocomputing 2017, 235, 228–235.
- Joseph, J.L.; Kumar, V.A.; Mathew, S.P. Fruit Classification Using Deep Learning BT—Innovations in Electrical and Electronic Engineering; Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N., Eds.; Springer: Singapore, 2021; pp. 807–817.
- Apolo-Apolo, O.E.; Martínez-Guanter, J.; Egea, G.; Raja, P.; Pérez-Ruiz, M. Deep Learning Techniques for Estimation of the Yield and Size of Citrus Fruits Using a UAV. Eur. J. Agron. 2020, 115, 126030.
- Yu, J.; Sharpe, S.M.; Schumann, A.W.; Boyd, N.S. Deep Learning for Image-Based Weed Detection in Turfgrass. Eur. J. Agron. 2019, 104, 78–84.
- Dias, P.A.; Tabb, A.; Medeiros, H. Apple Flower Detection Using Deep Convolutional Networks. Comput. Ind. 2018, 99, 17–28.
- Xia, X.; Chai, X.; Zhang, N.; Sun, T. Visual Classification of Apple Bud-Types via Attention-Guided Data Enrichment Network. Comput. Electron. Agric. 2021, 191, 106504.
- ImageNet. Available online: https://www.image-net.org/about.php (accessed on 25 April 2022).
- Watts, S.; Migicovsky, Z.; Myles, S. Cider and Dessert Apples: What Is the Difference? Plants People Planet 2022, 4, 593–598.
- Miles, C.; Peck, G.; Beltsville, M.B.U.; Geneva, T.C.U.; Miles, C.; State, W.; Nwrec, V.; Vernon, M.; Merwin, I.; Diamond, B.; et al. Importing European Cider Cultivars into the US. In Proceedings of the CiderCon 2016, Portland, OR, USA, 2–6 February 2016.
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014.
- Chollet, F. Keras. Available online: https://github.com/keras-team/keras (accessed on 21 December 2021).
- Breunig, M.; Al-Doori, M.; Butwilowski, E.; Kuper, P.V.; Benner, J.; Haefele, K.-H. Proceedings of the 9th 3DGeoInfo Conference 2014, Dubai, United Arab Emirates, 11–13 November 2014; The Conference Chairs of 3DGeoInfo: Karlsruhe, Germany, 2014.
- Chollet, F. Keras Documentation. 2015. Available online: https://keras.io/api (accessed on 11 April 2022).
- Chollet, F. Deep Learning with Python; Manning Publications: Shelter Island, NY, USA, 2021; ISBN 9781617296864.
- Tan, M.; Le, Q. EfficientNetV2: Smaller Models and Faster Training. arXiv 2021.
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2018.
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
- ILSRVC. ImageNet Large Scale Visual Recognition Challenge. Available online: https://www.image-net.org/challenges/LSVRC/index.php (accessed on 25 April 2022).
- Bhadouria, V.S. Explaining Accuracy, Precision, Recall, and F1 Score. Available online: https://medium.com/swlh/explaining-accuracy-precision-recall-and-f1-score-f29d370caaa8 (accessed on 12 July 2022).
- Siddiqi, R. Effectiveness of Transfer Learning and Fine Tuning in Automated Fruit Image Classification. In Proceedings of the 2019 3rd International Conference on Deep Learning Technologies, Xiamen, China, 5–7 July 2019; pp. 91–100.