J-PLUS: Discovery and characterisation of ultracool dwarfs using Virtual Observatory tools

  1. Mas-Buitrago, P.
  2. Solano, E.
  3. González-Marcos, A.
  4. Rodrigo, C.
  5. Martín, E. L.
  6. Caballero, J. A.
  7. Jiménez-Esteban, F.
  8. Cruz, P.
  9. Ederoclite, A.
  10. Ordieres-Meré, J.
  11. Bello-García, A. 1
  12. Dupke, R. A.
  13. Cenarro, A. J.
  14. Cristóbal-Hornillos, D.
  15. Hernández-Monteagudo, C.
  16. López-Sanjuan, C.
  17. Marín-Franch, A.
  18. Moles, M.
  19. Varela, J.
  20. Vázquez Ramió, H.
  21. Alcaniz, J.
  22. Sodré, L.
  23. Angulo, R. E.
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  2. 2 Centro de Astrobiología
    info

    Centro de Astrobiología

    Madrid, España

    ROR https://ror.org/038szmr31

  3. 3 Spanish Virtual Observatory
  4. 4 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  5. 5 Instituto de Astrofísica de Canarias
    info

    Instituto de Astrofísica de Canarias

    Santa Cruz de Tenerife, España

    ROR https://ror.org/03cmntr54

  6. 6 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  7. 7 Consejo Superior de Investigaciones Científicas
    info

    Consejo Superior de Investigaciones Científicas

    Madrid, España

    ROR https://ror.org/02gfc7t72

  8. 8 Centro de Estudios de Física del Cosmos de Aragón (CEFCA)
  9. 9 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  10. 10 National Observatory
    info

    National Observatory

    Río de Janeiro, Brasil

    ROR https://ror.org/03d47z838

  11. 11 University of Michigan–Ann Arbor
    info

    University of Michigan–Ann Arbor

    Ann Arbor, Estados Unidos

    ROR https://ror.org/00jmfr291

  12. 12 University of Alabama, Tuscaloosa
    info

    University of Alabama, Tuscaloosa

    Tuscaloosa, Estados Unidos

    ROR https://ror.org/03xrrjk67

  13. 13 Universidade de São Paulo
    info

    Universidade de São Paulo

    São Paulo, Brasil

    ROR https://ror.org/036rp1748

  14. 14 Donostia International Physics Center
    info

    Donostia International Physics Center

    San Sebastián, España

    ROR https://ror.org/02e24yw40

  15. 15 Ikerbasque, Fundación Vasca para la Ciencia
    info

    Ikerbasque, Fundación Vasca para la Ciencia

    Bilbao, España

    ROR https://ror.org/01cc3fy72

Revista:
Astronomy & Astrophysics

ISSN: 0004-6361 1432-0746

Año de publicación: 2022

Volumen: 666

Páginas: A147

Tipo: Artículo

DOI: 10.1051/0004-6361/202243895 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Astronomy & Astrophysics

Resumen

Context. Ultracool dwarfs (UCDs) comprise the lowest mass members of the stellar population and brown dwarfs, from M7 V to cooler objects with L, T, and Y spectral types. Most of them have been discovered using wide-field imaging surveys, for which the Virtual Observatory (VO) has proven to be of great utility.Aims. We aim to perform a search for UCDs in the entire Javalambre Photometric Local Universe Survey (J-PLUS) second data release (2176 deg2) following a VO methodology. We also explore the ability to reproduce this search with a purely machine learning (ML)-based methodology that relies solely on J-PLUS photometry.Methods. We followed three different approaches based on parallaxes, proper motions, and colours, respectively, using the VOSA tool to estimate the effective temperatures and complement J-PLUS photometry with other catalogues in the optical and infrared. For the ML methodology, we built a two-step method based on principal component analysis and support vector machine algorithms.Results. We identified a total of 7827 new candidate UCDs, which represents an increase of about 135% in the number of UCDs reported in the sky coverage of the J-PLUS second data release. Among the candidate UCDs, we found 122 possible unresolved binary systems, 78 wide multiple systems, and 48 objects with a high Bayesian probability of belonging to a young association. We also identified four objects with strong excess in the filter corresponding to the Ca II H and K emission lines and four other objects with excess emission in the Hα filter. Follow-up spectroscopic observations of two of them indicate they are normal late-M dwarfs. With the ML approach, we obtained a recall score of 92% and 91% in the 20 × 20 deg2 regions used for testing and blind testing, respectively.Conclusions. We consolidated the proposed search methodology for UCDs, which will be used in deeper and larger upcoming surveys such as J-PAS and Euclid. We concluded that the ML methodology is more efficient in the sense that it allows for a larger number of true negatives to be discarded prior to analysis with VOSA, although it is more photometrically restrictive.

Información de financiación

Financiadores

Referencias bibliográficas

  • Ahmed, (2019), A&Amp;A, 623, pp. A127, 10.1051/0004-6361/201834591
  • Allard, (2012), Philos. Trans. Roy. Soc. Lond. A, 370, pp. 2765
  • Robitaille, (2013), A&Amp;A, 558, pp. A33, 10.1051/0004-6361/201322068
  • Baumann, (2020), Astronomical Society of the Pacific Conference Series, 527, pp. 693
  • Bayo, (2008), A&Amp;A, 492, pp. 277, 10.1051/0004-6361:200810395
  • Benitez N., Dupke R., Moles M., et al. 2014, ArXiv e-prints, [arXiv:1403.5237]
  • Berger, (2010), ApJ, 709, pp. 332, 10.1088/0004-637X/709/1/332
  • Best, (2018), ApJS, 234, pp. 1, 10.3847/1538-4365/aa9982
  • Bochanski, (2010), AJ, 139, pp. 2679, 10.1088/0004-6256/139/6/2679
  • Bonnarel, (2000), A&Amp;As, 143, pp. 33
  • Burgasser, (2011), ApJ, 739, pp. 49, 10.1088/0004-637X/739/1/49
  • Burgasser, (2015), ApJS, 220, pp. 18, 10.1088/0067-0049/220/1/18
  • Caballero, (2008), A&Amp;A, 488, pp. 181, 10.1051/0004-6361:200809520
  • Caffau, (2011), Sol. Phys., 268, pp. 255, 10.1007/s11207-010-9541-4
  • Cenarro, (2014), Observatory Operations: Strategies, Processes, and Systems V, 9149, pp. 553
  • Cenarro, (2019), A&Amp;A, 622, pp. A176, 10.1051/0004-6361/201833036
  • Chambers K.C., Magnier E.A., Metcalfe N., et al. 2016, ArXiv e-prints, [arXiv:1612.05560]
  • Cincunegui, (2007), A&Amp;A, 469, pp. 309, 10.1051/0004-6361:20066503
  • Cortes, (2009), Chem. Biol. Drug Des., 297, pp. 273
  • Cross, (2012), A&Amp;A, 548, pp. A119, 10.1051/0004-6361/201219505
  • Epchtein, (1997), The Messenger, 87, pp. 27
  • Faherty, (2009), AJ, 137, pp. 1, 10.1088/0004-6256/137/1/1
  • Gagné, (2018), ApJ, 856, pp. 23, 10.3847/1538-4357/aaae09
  • Gillon, (2016), Nature, 533, pp. 221, 10.1038/nature17448
  • Gillon, (2017), Nature, 542, pp. 456, 10.1038/nature21360
  • González-Marcos, (2017), MNRAS, 465, pp. 4556, 10.1093/mnras/stw3031
  • Górski, (2005), ApJ, 622, pp. 759, 10.1086/427976
  • Hambaryan, (2004), A&Amp;A, 415, pp. 265, 10.1051/0004-6361:20034378
  • Harris, (2020), Nature, 585, pp. 357, 10.1038/s41586-020-2649-2
  • Hotelling, (1933), J. Educ. Psychol., 24, pp. 447, 10.1037/h0070888
  • Hunter, (2007), Comput. Sci. Eng., 9, pp. 90, 10.1109/MCSE.2007.55
  • Jones E., Oliphant T., & Peterson P. 2001, SciPy: Open Source Scientific Tools for Python
  • Kilic, (2017), ApJ, 837, pp. 162, 10.3847/1538-4357/aa62a5
  • Kirkpatrick, (2005), ARA&Amp;A, 43, pp. 195, 10.1146/annurev.astro.42.053102.134017
  • Kirkpatrick, (2019), ApJS, 240, pp. 19, 10.3847/1538-4365/aaf6af
  • Laugalys, (2002), Baltic Astron., 11, pp. 205
  • Lawrence, (2007), MNRAS, 379, pp. 1599, 10.1111/j.1365-2966.2007.12040.x
  • Liebert, (1999), ApJ, 519, pp. 345, 10.1086/307349
  • Liebert, (2003), AJ, 125, pp. 343, 10.1086/345514
  • Lindegren, (2018), A&Amp;A, 616, pp. A2, 10.1051/0004-6361/201832727
  • Lodieu, (2017), A&Amp;A, 598, pp. A92, 10.1051/0004-6361/201629410
  • López-Sanjuan, (2021), A&Amp;A, 654, pp. A61, 10.1051/0004-6361/202140444
  • Luri, (2018), A&Amp;A, 616, pp. A9, 10.1051/0004-6361/201832964
  • Marin-Franch, (2015), IAU General Assembly, 29, pp. 2257381
  • Martin, (2001), AJ, 121, pp. 2758, 10.1086/320412
  • Martin, (1999), AJ, 118, pp. 1005, 10.1086/300983
  • Martin, (2010), A&Amp;A, 517, pp. A53, 10.1051/0004-6361/201014202
  • Mason, (2001), AJ, 122, pp. 3466, 10.1086/323920
  • McInnes, (2018), J. Open Source Softw., 3, pp. 861, 10.21105/joss.00861
  • Meingast, (2019), A&Amp;A, 622, pp. L13, 10.1051/0004-6361/201834950
  • Mould, (1994), AJ, 107, pp. 2222, 10.1086/117032
  • Naim, (1995), MNRAS, 275, pp. 567, 10.1093/mnras/275.3.567
  • Ochsenbein, (2000), A&Amp;As, 143, pp. 23
  • Pecaut, (2013), ApJS, 208, pp. 9, 10.1088/0067-0049/208/1/9
  • Pedregosa F., Varoquaux G., Gramfort A., et al. 2012, ArXiv e-prints, [arXiv:1201.0490]
  • Pineda, (2016), ApJ, 826, pp. 73, 10.3847/0004-637X/826/1/73
  • Rayner, (2003), PASP, 115, pp. 362, 10.1086/367745
  • Reylé, (2018), A&Amp;A, 619, pp. L8, 10.1051/0004-6361/201834082
  • Route, (2016), ApJ, 830, pp. 85, 10.3847/0004-637X/830/2/85
  • Sarro, (2013), A&Amp;A, 550, pp. A120, 10.1051/0004-6361/201220184
  • Schmidt, (2007), AJ, 133, pp. 2258, 10.1086/512158
  • Schmidt, (2010), AJ, 139, pp. 1808, 10.1088/0004-6256/139/5/1808
  • Schneider, (1991), AJ, 102, pp. 1180, 10.1086/115945
  • Skrutskie, (2006), AJ, 131, pp. 1163, 10.1086/498708
  • Skrzypek, (2016), A&Amp;A, 589, pp. A49, 10.1051/0004-6361/201527359
  • Smart, (2017), MNRAS, 469, pp. 401, 10.1093/mnras/stx800
  • Smart, (2019), MNRAS, 485, pp. 4423, 10.1093/mnras/stz678
  • Solano, (2019), A&Amp;A, 627, pp. A29, 10.1051/0004-6361/201935256
  • Solano, (2021), MNRAS, 501, pp. 281, 10.1093/mnras/staa3423
  • Straižys, (2002), Baltic Astron., 11, pp. 231
  • Taylor, (2005), Astronomical Society of the Pacific Conference Series, 347, pp. 29
  • Taylor, (2006), Astronomical Society of the Pacific Conference Series, 351, pp. 666
  • Theissen, (2016), AJ, 151, pp. 41, 10.3847/0004-6256/151/2/41
  • Theissen, (2017), AJ, 153, pp. 92, 10.3847/1538-3881/153/3/92
  • Torres, (2000), AJ, 120, pp. 1410, 10.1086/301539
  • Torres, (2008), Handbook of Star Forming Regions, II, ed. B. Reipurth, 5, pp. 757
  • Torres, (2019), MNRAS, 485, pp. 5573, 10.1093/mnras/stz814
  • van der Maaten, (2008), J. Mach. Learn. Res., 9, pp. 2579
  • Vapnik V.N. 1979, Estimation of Dependences Based on Empirical Data (in Russian) (USSR: Nauka)
  • Wang, (2022), A&Amp;A, 659, pp. A144, 10.1051/0004-6361/202142254
  • Waskom, (2021), J. Open Source Softw., 6, pp. 3021, 10.21105/joss.03021
  • Wenger, (2000), A&Amp;AS, 143, pp. 9
  • Whitten, (2019), A&Amp;A, 622, pp. A182, 10.1051/0004-6361/201833368
  • Wright, (2010), AJ, 140, pp. 1868, 10.1088/0004-6256/140/6/1868
  • Yamashiki, (2019), ApJ, 881, pp. 114, 10.3847/1538-4357/ab2a71
  • York, (2000), AJ, 120, pp. 1579, 10.1086/301513
  • Zhang, (2009), A&Amp;A, 497, pp. 619, 10.1051/0004-6361/200810314
  • Zhang, (2010), MNRAS, 404, pp. 1817
  • Zhang, (2018), MNRAS, 479, pp. 1383, 10.1093/mnras/sty1352
  • Zuckerman, (2018), ApJ, 870, pp. 27, 10.3847/1538-4357/aaee66
  • Zuckerman, (2001), ApJ, 562, pp. L87, 10.1086/337968
  • Zuckerman, (2004), ApJ, 613, pp. L65, 10.1086/425036
  • Zuckerman, (2006), ApJ, 649, pp. L115, 10.1086/508060