Shelf Life of Fresh Sliced Sea Bream Pack in PET Nanocomposite Trays

  1. Teresa Fernández-Menéndez 1
  2. David García-López 3
  3. Antonio Argüelles 1
  4. Ana Fernández 2
  5. Jaime Viña 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  2. 2 Klöckner Pentaplast
  3. 3 SMRC Automotive Interiors Spain S.L.U
Revista:
Polymers

ISSN: 2073-4360

Año de publicación: 2021

Volumen: 13

Número: 12

Páginas: 1974

Tipo: Artículo

DOI: 10.3390/POLYM13121974 PMID: 34204004 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Polymers

Resumen

Spoilage of fish due to microbiological activity is one of the biggest problems found by producers to take fresh fish products to customers. It is necessary packaging improvements to be able to increase fish shelf life and, thus, be able to travel further and to keep product freshness longer at customer’s houses. In the present work, a new material is developed for fish packaging in modified atmosphere (MAP). This material is poly(ethylene terephathalate) (PET) extruded with a polyamide (PA) nanocomposite containing nanosepiolite. Here, it is shown the production procedure from laboratory to industrial scale. Permeability to oxygen and impact mechanical properties results are shown for different samples, both at laboratory and industrial processes. At the end, a material composition is chosen to produce the finale tray which will contain the sliced sea bream. Microbiological analysis is done over the packed fish, resulting is a lower microbiological count compared to a PET control sample. This means that shelf life of pack sea bream could increase from 2–4 to 7–9 days, which is very important for both producers and customers. On the other hand, trays obtained comply with European regulations in food contact materials (FCM) and, overall, they are suitable for food packaging materials.

Referencias bibliográficas

  • Stenmarck, A.; Jensen, C.; Quested, T.; Moates, G. Estimates of European food waste levels. Fusions 2016. [CrossRef]
  • European Parliament, Council of the European Union. Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food. Off. J. Eur. Union 2004, 338, 4–17.
  • Commission Regulation (EC) No 2023/2006 of 22 December 2006 on Good Manufacturing Practice for Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri= CELEX:32006R2023&from=EN (accessed on 11 June 2021).
  • Hauzoukim, S.S.; Moharty, B. Modified atmosphere packaging of fish and fishery products. A review. J. Entomol. Zool. Stud. 2020, 8, 651–659.
  • Siracusa, V. Food packaging permeability behavior: A report. Int. J. Polym. Sci. 2012, 2012, 302029. [CrossRef]
  • Fernandes, S.; Romani, V.; Dilipini, G.; Martins, V. Chia seeds to develop new biodegradable polymers for food packaging. Preparation and biodegradability. Polym. Eng. Sci. 2020, 60, 2214–2223. [CrossRef]
  • Nisticò, R. Polyethylene terephthalate (PET) in the packaging industry. Polym. Test. 2020, 90, 106707. [CrossRef]
  • Davis, C.; Mathias, L.; Gilman, J.; Schiraldi, D.; Randy Shields, J.; Trulove, P.; Sutto, T.; Delong, H. Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites. J. Polym. Sci. 2020, 60, 2214–2223. [CrossRef]
  • Ghanbari, A.; Heuzey, M.; Carreau, P.; Ton-That, M. A novel approach to control thermal degradation of PET (organoclay nanocomposites and improve clay exfoliation. Polymer 2013, 54, 1361–1369. [CrossRef]
  • Lim, J.; Lim,W.; Lee, M.; Park, H. Barrier and structural properties of polyethylene terephyhalate film coated with poly (acrylic acid)/montmorillonite nanocomposites. Packag. Technol. Sci. 2020, 34, 141–150. [CrossRef]
  • Majdzadeh-Ardakani, K.; Zekriardehani, S.; Coleman, M.; Jabarin, S. A novel approach to improve the barrier properties of PET/clay nanocomposites. Int. J. Polym. Sci. 2017, 2017, 7625906. [CrossRef]
  • Efatian, H.; Ahari, H.; Shahbazzadeh, B.; Nowruzi, B.; Yousefi, S. Fabrication and characterization of LDPE/siver-copper/titanium dioxide nanocomposite films for application in Nile Tilapia (oreochromis niloticus) packaging. J. Food Meas. Charact. 2011, 3, 2430–2439.
  • Fernández-Menéndez, T.; García-López, D.; Argüelles, A.; Fernández, A.; Viña, J. Industrially produced PET nanocomposites with enhanced properties for food packaging applications. Polym. Test. 2020, 90, 106729. [CrossRef]
  • Nagy, B.; Bradley, W. The structural scheme of sepiolite. Am. Miner. 1955, 40, 885–892. [CrossRef]
  • García-López, D.; Fernández, J.; Merino, J.; Pastor, J. Effect of organic modification of sepiolite for PA6 polymer/organoclay nanocomposites. Comp. Sci. Technol. 2010, 70, 1429–1436. [CrossRef]
  • Parlapani, F.; Mallouchos, A.; Haroutounian, A.; Boziaris, I. Microbiological spoilage and investigation of atile profile during storage of sea bream fillets under various conditions. Int. J. Food. Microbiol. 2014, 189, 153–163. [CrossRef]
  • Mitsubishi Gas Chemical. Available online: https://www.mgc.co.jp/eng/products/ac/nmxd6/about.html (accessed on 18 December 2020).
  • Commission Regulation (EC) No 975/2009 of 19 October 2009 Amending Directive 2002/72/EC Relating to Plastic Materials and Articles Intended to Come into Contact with Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ. do?uri=OJ:L:2009:274:0003:0008:EN:PDF (accessed on 11 June 2021).
  • Commission Directive 2007/19/EC of 30 March 2007 Amending Directive 2002/72/EC Relating to Plastic Materials and Articles Intended to Come into Contact with Food and Council Directive 85/572/EEC Laying Down the List of Simulants to be Used for Testing Migration of Constituents of Plastic Materials and Articles Intended to come into Contact with Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/ES/ALL/?uri=CELEX%3A32007L0019 (accessed on 11 June 2021).
  • Calcagno, C.; Mariani, C.; Teixeira, S.; Mauler, R. The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 2007, 48, 966–974. [CrossRef]
  • ASTM D3985-17. Standard Test Method for Oxygen Gas Transmission Rate through Plastic Film and Sheeting using a Coulometric Sensor; ASTM:West Conshohocken, PA, USA, 2017.
  • ISO 6603-2: 2000. Plastics—Determination of Puncture Impact Behaviour of Rigid Plastics—Part 2: Instrumented Impact Testing; International Organization for Standardization: Geneva, Switzerland, 2010.
  • International Commission on Microbiological Specifications for Foods. Sampling plans for fish and shellfish. In Microorganism in Foods 2, Sampling for Microbiological Analysis: Principles and Scientific Applications; University of Toronto Press: Toronto, ON, Canada, 1986; pp. 181–196.
  • Ma, G.Q.; Yang, H.; Li, L.; Sun, Z.B.; Miao, X.R.; Bian, F.G.; Xu, J.Z.; Zhong, G.J.; Gao, X.Q.; Li, Z.M. Structure of polyamide 6/poly(ethylene terephthalate) blends under high cooling rate and shear stress and their moisture-sensitive properties. Polymer 2020, 203, 122817. [CrossRef]
  • Tanaka, F.; Cruz, S.; Canto, L. Morphological, thermal and mechanical behaviour of sepiolite-based poly (ethylene terephthalate) polyamide 66 blend. Polym. Test. 2018, 72, 298–307. [CrossRef]
  • Ghasemi, H.; Carreu, P.; Kamal, M.; Tabatabaei, S. Properties of PET/clay nanocomposites films. Polym. Eng. Sci. 2012, 42, 420–430. [CrossRef]
  • Frones, T.; Yoon, P.; Hunter, D.; Keskkula, H.; Paul, D.R. Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 2002, 43, 5915–5933. [CrossRef]
  • Pavlidou, S.; Papaspyrides, C. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [CrossRef]
  • Xu, X.; Ding, Y.; Qian, Z.; Wang, F.; Wen, B.; Zhou, H.; Zhang, S.; Yang, M. Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension. Polym. Degrad. Stabil. 2009, 94, 113–123. [CrossRef]
  • Frounchi, A.D.M. Oxygen barrier properties of poly (ethylene terephthalate) nanocomposite films. Macromol. Mater. Eng. 2009, 294, 68–74. [CrossRef]
  • Pillo, L.; Lara, J.; Pillon, D. On the crystallinity and some structure/property relationships of poly (ethylene terephthalate)-poly (amide-6,6) blends. Polym. Eng. Sci. 1987, 27, 984–989. [CrossRef]
  • Fernández-Menéndez, T.; García-López, D.; Argüelles, A.; Fernández, A.; Viña, J. Application of PET/sepiolite nanocomposite trays to improve food quality. Foods 2021, 10, 1188. [CrossRef]
  • Commission Regulation (EC) N. 2073/2005 of 15 November 2005 on Microbiological Criteria for Food Stuffs. 2005. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2073 (accessed on 11 June 2021).
  • Franke, C.; Holl, L.; Langowski, H.; Petermeier, K.; Vogel, R. Sensory evaluation of chicken breast packed in two different modifies atmospheres. Food Packag. Shelf 2017, 13, 66–75. [CrossRef]
  • Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32011R0010 (accessed on 11 June 2021).
  • UNE-EN 1186-14. Materials and Articles in Contact with Foodstuffs. In Plastics Part 14: Test Methods for Substitute Tests for Overall Migration from Plastics Intended to Come into Contact with Fatty Foodstuffs Using Test Media Iso-Octane and 95% Ethanol; Spanish Association for Normalization (Asociación Esñola de Normalización), UNE: Madrid, Spain, 2003.
  • Commission Directive 2002/72/EC of 6 August 2002 Relating to Plastic Materials and Articles Intended to Come into Contact with Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32002L0072 (accessed on 11 June 2021).