Human Resources AnalyticsA systematic Review from a Sustainable Management Approach

  1. Álvarez-Gutiérrez, Francisco J. 1
  2. Stone, Dianna L. 2
  3. Castaño, Ana M. 3
  4. García-Izquierdo, Antonio L. 3
  1. 1 University of Santiago de Compostela, Spain
  2. 2 University of New Mexico, USA
  3. 3 University of Oviedo, Spain
Revista:
Revista de psicología del trabajo y de las organizaciones = Journal of work and organizational psychology

ISSN: 1576-5962

Año de publicación: 2022

Volumen: 38

Número: 3

Páginas: 129-147

Tipo: Artículo

DOI: 10.5093/JWOP2022A18 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de psicología del trabajo y de las organizaciones = Journal of work and organizational psychology

Resumen

La analítica de recursos humanos (ARH) atrae cada vez más atención en los últimos años y será crucial para el desarrollo del ámbito de los recursos humanos. No obstante, la literatura sobre el tema parece ser más promocional que descriptiva. Para comprobar esto, llevamos a cabo una revisión sistemática de la literatura y un análisis de contenido con los siguientes objetivos: primero, abordar el estado actual la ARH y segundo, proponer un marco para el desarrollo de la AHR como una práctica sostenible. Analizamos 79 artículos de investigación incluidos en las más prestigiosas bases de datos y encontramos 34 estudios empíricos para su posterior análisis de contenido. Los principales resultados reflejan la relativa novedad del campo de la ARH, estando centrados la mayoría de los artículos en los aspectos financieros. No obstante, también se observa la creciente importancia dada a la ética. Finalmente, proponemos un marco para el desarrollo de una ARH basada en la triple cuenta de resultados (económica, social y medioambiental, y se discuten las implicaciones prácticas y teóricas de nuestros hallazgos.

Referencias bibliográficas

  • Aguado, D., Andrés, J. C., García-Izquierdo, A. L., & Rodríguez, J. (2019). LinkedIn “Big Four”: Job performance validation in the ICT sector. Journal of Work and Organizational Psychology, 35(2), 53-64. https://doi.org/10.5093/jwop2019a7
  • Aguinis, H., Hill, N. S., & Bailey, J. R. (2021). Best practices in data collection and preparation: Recommendations for reviewers, editors, and authors. Organizational Research Methods, 24(4), 678-693. https://doi.org/10.1177/1094428119836485
  • *Al-Ayed, S. I. (2019). The impact of strategic human resource management on organizational resilience: An empirical study on hospitals. Business: Theory and Practice, 20(2), 179-186. https://doi.org/10.3846/BTP.2019.17
  • Andersen, M. K. (2017). Human capital analytics: The winding road. Journal of Organizational Effectiveness: People and Performance, 4(2), 133-136. https://doi.org/10.1108/JOEPP-03-2017-0024
  • Angrave, D., Charlwood, A., Kirkpatrick, I., Lawrence, M., & Stuart, M. (2016). HR and analytics: Why HR is set to fail the big data challenge. Human Resource Management Journal, 26(1), 1-11. https://doi.org/10.1111/1748-8583.12090
  • *Aral, S., Brynjolfsson, E., & Wu, L. (2012). Three-way complementarities: Performance pay, human resource analytics, and information technology. Management Science, 58(5), 913-931. https://doi.org/10.1287/mnsc.1110.1460
  • Aust, I., Matthews, B., & Muller-Camen, M. (2020). Common good HRM: A paradigm shift in sustainable HRM? Human Resource Management Review, 30(3), 100705. https://doi.org/10.1016/j.hrmr.2019.100705
  • Barrena-Martínez, J., López-Fernández, M., & Romero-Fernández, P. M. (2019). Towards a configuration of socially responsible human resource management policies and practices: Findings from an academic consensus. The International Journal of Human Resource Management, 30(17), 2544-2580. https://doi.org/10.1080/09585192.2017.1332669
  • Bassi, L., Carpenter, R., & McMurrer, D. (Eds.). (2012). HR analytics handbook. Reed Business.
  • Booth, A. (2006). Clear and present questions: Formulating questions for evidence based practice. Library Hi Tech, 24(3), 355-368. https://doi.org/10.1108/07378830610692127
  • Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662-679. https://doi.org/10.1080/1369118X.2012.678878
  • *Brandt, P. M., & Herzberg, P. Y. (2020). Is a cover letter still needed? Using LIWC to predict application success. International Journal of Selection and Assessment, 28(4), 417-429. https://doi.org/10.1111/ijsa.12299
  • Calude, C. S., & Longo, G. (2017). The deluge of spurious correlations in big data. Foundations of Science, 22(3), 595-612. https://doi.org/10.1007/s10699-016-9489-4
  • Cooke, A., Smith, D., & Booth, A. (2012). Beyond PICO: The SPIDER tool for qualitative evidence synthesis. Qualitative Health Research, 22(10), 1435-1443. https://doi.org/10.1177/1049732312452938
  • Cohen, E., Taylor, S., & Muller- Camen, M. (2012). HRM’s role in corporate social and environmental sustainability. Society for Human Resource Management Foundation.
  • Dattner, B., Chamorro-Premuzic, T., Buchband, R., & Schettler, L. (2019, April 25). The legal and ethical implications of using AI in hiring. Harvard Business Review. https://hbr.org/2019/04/the-legal-and-ethical-implications-of-using-ai-in-hiring
  • Davenport, T. H., Harris, J., & Shapiro, J. (2010, October 1). Competing on talent analytics. Harvard Business Review. https://hbr.org/2010/10/competing-on-talent-analytics
  • Davenport, T., & Ronanki, R. (2018 January-February). Artificial intelligence for the real world: Don’t start with moon shots. Harvard Business Review.
  • Deloitte. (2018). Global Human Capital Trends. https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/human-capital/deloitte-uk-human-capital-trends-2018.pdf
  • Dulebohn, J. H., & Johnson, R. D. (2013). Human resource metrics and decision support: A classification framework. Human Resource Management Review, 23(1), 71-83. https://doi.org/10.1016/j.hrmr.2012.06.005
  • Edwards, M. R., Charlwood, A., Guenole, N., & Marler, J. (2022). HR analytics: An emerging field finding its place in the world alongside simmering ethical challenges. Human Resource Management Journal. Advance online publication. https://doi.org/10.1111/1748-8583.12435
  • Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1(2), 293-314. https://doi.org/10.48550/arXiv.1308.1479
  • Fernandez, V., & Gallardo-Gallardo, E. (2020). Tackling the HR digitalization challenge: Key factors and barriers to HR analytics adoption. Competitiveness Review: An International Business Journal, 31(1), 162-187. https://doi.org/10.1108/CR-12-2019-0163
  • Fitz-Enz, J. (1984). How to measure human resource management. McGraw-Hill.
  • *Frederiksen, A. (2017). Job satisfaction and employee turnover: A firm-level perspective. German Journal of Human Resource Management, 31(2), 132-161. https://doi.org/10.1177/2397002216683885
  • García-Izquierdo, A. L., Aguado, D., & Ponsoda- Gil, V. (2019). New Insights on Technology and Assessment: Introduction to JWOP Special Issue. Journal of Work and Organizational Psychology, 35(2), 49-52. https://doi.org/10.5093/jwop2019a6
  • García-Izquierdo, A. L., Aguinis, H., & Ramos-Villagrasa, P. J. (2010). Science–practice gap in e-recruitment. International Journal of Selection and Assessment, 18(4), 432-438. https://doi.org/10.1111/j.1468-2389.2010.00525.x
  • García-Izquierdo, A. L., Moreno, B., & García-Izquierdo, M. (2010). Applying information theory to small groups assessment: Emotions and well-being at work. The Spanish Journal of Psychology, 13(1), 309-328. https://doi.org/10.1017/S1138741600003887
  • García-Izquierdo, A. L., Ramos-Villagrasa, P. J., & Lubiano, M. A. (2020). Developing biodata for public manager selection purposes: A comparison between fuzzy logic and traditional methods. Journal of Work and Organizational Psychology, 36(3), 231-242. https://doi.org/10.5093/jwop2020a22
  • *Gelbard, R., Ramon-Gonen, R., Carmeli, A., Bittmann, R. M., & Talyansky, R. (2018). Sentiment analysis in organizational work: Towards an ontology of people analytics. Expert Systems, 35(5), Article e12289. https://doi.org/10.1111/exsy.12289
  • Giermindl, L. M., Strich, F., Christ, O., Leicht-Deobald, U., & Redzepi, A. (2022). The dark sides of people analytics: Reviewing the perils for organisations and employees. European Journal of Information Systems, 31(3), 410-435. https://doi.org/10.1080/0960085X.2021.1927213
  • Gonzalez, M. F., Capman, J. F., Oswald, F. L., Theys, E. R., & Tomczak, D. L. (2019). Where’s the IO?” Artificial intelligence and machine learning in talent management systems. Personnel Assessment and Decisions, 5(3), 33-44. https://doi.org/10.25035/pad.2019.03.005
  • Guastello, S. J. (2013). Chaos, catastrophe, and human affairs: Applications of nonlinear dynamics to work, organizations, and social evolution. Psychology Press.
  • Haider, S., Fatima, N., & Pablos-Heredero, C. D. (2020). A three-wave longitudinal study of moderated mediation between perceptions of politics and employee turnover intentions: The role of job anxiety and political skills. Journal of Work and Organizational Psychology, 36(1), 1-14. https://doi.org/10.5093/jwop2020a1
  • Harley, B. (2015). The one best way? “Scientific” research on HRM and the threat to critical scholarship. Human Resource Management Journal, 25(4), 399-407. https://doi.org/10.1111/1748-8583.12082
  • *Hazarika, I., Albeshr, M., Cho, B., & Jumde, A. (2019). Role of HR metrics in enhancing firm performance of selected uae airline companies. Academy of Strategic Management Journal, 18(6), 1-8.
  • *Hicks, C. (2018). Predicting knowledge workers’ participation in voluntary learning with employee characteristics and online learning tools. Journal of Workplace Learning, 30(2), 78-88. https://doi.org/10.1108/JWL-04-2017-0030
  • *Hoang, P., Mahoney, T., Javed, F., & McNair, M. (2018). Large-scale occupational skills normalization for online recruitment. AI Magazine, 39(1), 5-14. https://doi.org/10.1609/aimag.v39i1.2775
  • Holsapple, C., Lee-Post, A., & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130-141. https://doi.org/10.1016/j.dss.2014.05.013
  • *Jabir, B., Falih, N., & Rahmani, K. (2019). HR analytics a roadmap for decision making: Case study. Indonesian Journal of Electrical Engineering and Computer Science, 15(2), 979-990. https://doi.org/10.11591/ijeecs.v15.i2.pp979-990
  • Jac, F., & Fitz-enz, J. (1984). How to measure human resources management. McGraw-Hill.
  • Johnson, R. D., & Stone, D. L. (2019). Advantages and unintended consequences of using electronic human resource management (eHRM) processes. In R. N. Landers (Ed.), The Cambridge handbook of technology and employee behavior. Cambridge University Press.
  • Johnson, R. D., Stone, D. L., & Lukaszewski, K. M. (2021). The future is now! Promise and pitfalls of artificial intelligence in human resource management. Manuscript submitted for publication. Department of Management, Information Systems, and Entrepreneurship. Washington State University, Pullman, WA.
  • *Kalvakolanu, S., Madhavaiah, C., & Hanumantharao, S. (2019). Applying fuzzy logic to measure analytical competencies of HR professionals. Journal of Advanced Research in Dynamical and Control Systems, 11(6), 219-224.
  • *Khan, S. A., & Tang, J. (2016). The paradox of human resource analytics: Being mindful of employees. Journal of General Management, 42(2), 57-66. https://doi.org/10.1177/030630701704200205
  • King, K. G. (2016). Data analytics in human resources: A case study and critical review. Human Resource Development Review, 15(4), 487-495. https://doi.org/10.1177/1534484316675818
  • Kitchin, R. (2014). The Data revolution: Big data, open data, data infrastructure, and their consequences. Sage.
  • *Köchling, A., Riazy, S., Wehner, M. C., & Simbeck, K. (2020). Highly accurate, but still discriminatory: A fairness evaluation of algorithmic video analysis in the recruitment context. Business and Information Systems Engineering, 63, 39-54. https://doi.org/10.1007/s12599-020-00673-w
  • *Koriat, N., & Gelbard, R. (2019). Knowledge sharing analytics: The case of IT workers. Journal of Computer Information Systems, 59(4), 308-318. https://doi.org/10.1080/08874417.2017.1360163
  • *Kryscynski, D., Reeves, C., Stice-Lusvardi, R., Ulrich, M., & Russell, G. (2018). Analytical abilities and the performance of HR professionals. Human Resource Management, 57(3), 715-738. https://doi.org/10.1002/hrm.21854
  • Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 1-16. https://doi.org/10.1177%2F2053951718756684
  • Leong, C. W., Roohr, K., Ramanarayanan, V., Martin-Raugh, M. P., Kell, H., Ubale, R., Qian, Y., Mladineo, Z., & McCulla, L. (2019). To trust, or not to trust? A study of human bias in automated video interview assessments. Paper presented at the ICCV Worksop on Interpreting and Explaining Visual Artificial Intelligence Models, Seoul.
  • Levenson, A. (2018). Using workforce analytics to improve strategy execution. Human Resource Management, 57(3), 685-700. https://doi.org/10.1002/hrm.21850
  • Levenson, A., & Fink, A. (2017). Human capital analytics: Too much data and analysis, not enough models and business insights. Journal of Organizational Effectiveness, 4(2), 145-156. https://doi.org/10.1108/JOEPP-03-2017-0029
  • Leventhal, G. S. (1980). What should be done with equity theory? In K. J. Gergen, M. S. Greenberg, & R. H. Willis (Eds.), Social exchange (pp. 27-55). Springer. https://doi.org/10.1007/978-1-4613-3087-5_2
  • *Lismont, J., Vanthienen, J., Baesens, B., & Lemahieu, W. (2017). Defining analytics maturity indicators: A survey approach. International Journal of Information Management, 37(3), 114-124. https://doi.org/10.1016/j.ijinfomgt.2016.12.003
  • *Luo, Z., Liu, L., Yin, J., Li, Y., & Wu, Z. (2019). Latent ability model: A generative probabilistic learning framework for workforce analytics. IEEE Transactions on Knowledge and Data Engineering, 31(5), 923-937. https://doi.org/10.1109/TKDE.2018.2848658
  • Margherita, A. (2022). Human resources analytics: A systematization of research topics and directions for future research. Human Resource Management Review, 32(2), Article 100795. https://doi.org/10.1016/j.hrmr.2020.100795
  • Marler, J. H., & Boudreau, J. W. (2017). An evidence-based review of HR Analytics. International Journal of Human Resource Management, 28(1), 3-26. https://doi.org/10.1080/09585192.2016.1244699
  • Mazzocchi, F. (2015). Could big data be the end of theory in science: A few remarks on the epistemology of data driven science. European Molecular Biology Organization (EMBO) Reports, 16(10), 1250-1255. https://doi.org/10.15252/embr.201541001
  • *McCartney, S., Murphy, C., & Mccarthy, J. (2020). 21st century HR: A competency model for the emerging role of HR analysts. Personnel Review, 50(6), 1495-1513. https://doi.org/10.1108/PR-12-2019-0670
  • McIver, D., Lengnick-Hall, M. L., & Lengnick-Hall, C. A. (2018). A strategic approach to workforce analytics: Integrating science and agility. Business Horizons, 61(3), 397-407. https://doi.org/10.1016/j.bushor.2018.01.005
  • Minbaeva, D. B. (2018). Building credible human capital analytics for organizational competitive advantage. Human Resource Management, 57(3), 701-713. https://doi.org/10.1002/hrm.21848
  • Mobley, W. H., Griffeth, R. W., Hand, H., & Meglino, B. M. (1979). Review and conceptual analysis of the employee turnover process. Psychological Bulletin, 86(3), 493-522. https://psycnet.apa.org/doi/10.1037/0033-2909.86.3.493
  • Moscoso, S., & Salgado, J. F. (2021). Meta-analytic examination of a suppressor effect on subjective well-being and job performance relationship. Journal of Work and Organizational Psychology, 37(2), 119-131. https://doi.org/10.5093/jwop2021a13
  • *Nandialath, A. M., David, E., Das, D., & Mohan, R. (2018). Modeling the determinants of turnover intentions: A Bayesian approach. Evidence-based HRM, 6(1), 2-24. https://doi.org/10.1108/EBHRM-10-2016-0025
  • Navarro, J., Rueff-Lopes, R., & Laurenceau, J. (2022). Studying within-person changes in work motivation in the short and medium term: You will likely need more measurement points than you think! Journal of Work and Organizational Psychology, 38(1), 1-17. https://doi.org/10.5093/jwop2022a1
  • *Necula, S.-C., & Strîmbei, C. (2019). People analytics of semantic web human resource résumés for sustainable talent acquisition. Sustainability, 11(13), Article 3520. https://doi.org/10.3390/su11133520
  • *Newman, D. T., Fast, N. J., & Harmon, D. J. (2020). When eliminating bias isn’t fair: Algorithmic reductionism and procedural justice in human resource decisions. Organizational Behavior and Human Decision Processes, 160, 149-167. https://doi.org/10.1016/j.obhdp.2020.03.008
  • Oh, I. S. (2020). Beyond meta-analysis: Secondary uses of meta-analytic data. Annual Review of Organizational Psychology and Organizational Behavior, 7, 125-153.
  • Osoba, O. A., & Welser, W. I. (2017). An intelligence in our image: The risks of bias and errors in artificial intelligence. RAND Corporation. https://www.rand.org/pubs/research_reports/RR1744.html
  • *Ozgur, E., Dexter, F., & Ledolter, J. (2017). Mixed effects logistic regression modeling of daily evaluations of nurse anesthetists’ work habits adjusting for leniency of the rating anesthesiologists. Perioperative Care and Operating Room Management, 6, 14-19. https://doi.org/10.1016/j.pcorm.2017.02.001
  • Peeters, T., Paauwe, J., & Van De Voorde, K. (2020). People analytics effectiveness: Developing a framework. Journal of Organizational Effectiveness, 7(2), 203-219. https://doi.org/10.1108/JOEPP-04-2020-0071
  • *Pessach, D., Singer, G., Avrahami, D., Chalutz Ben-Gal, H., Shmueli, E., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, Article 113290. https://doi.org/10.1016/j.dss.2020.113290
  • Pew Research, & Elon University (2012). The future of big data. Pew Research Center. https://www.pewresearch.org/internet/2012/07/20/the-future-of-big-data/
  • PRISMA-P Group, Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), Article 1. https://doi.org/10.1186/2046-4053-4-1
  • Pujol-Cols, L., & Lazzaro-Salazar, M. (2021). Ten years of research on psychosocial risks, health, and performance in Latin America: A comprehensive systematic review and research agenda. Journal of Work and Organizational Psychology, 37(3), 187-202. https://doi.org/10.5093/jwop2021a18
  • Ramos- Villagrasa, P. J., & García- Izquierdo, A. L. (2011). Técnicas de análisis de patrones caóticos: revisión de estudios empíricos en Psicología. Anales de Psicología/Annals of Psychology, 27(1), 239-248. https://revistas.um.es/analesps/article/view/113681
  • Rasmussen, T., & Ulrich, D. (2015). Learning from practice: How HR analytics avoids being a management fad. Organizational Dynamics, 44(3), 236-242. https://doi.org/10.1016/j.orgdyn.2015.05.008
  • Raub, M. (2018). Bots, bias and big data: artificial intelligence, algorithmic bias and disparate impact liability in hiring practices. Arkansas Law Review, 71(2), 529-570.
  • *Rombaut, E., & Guerry, M.-A. (2018). Predicting voluntary turnover through human resources database analysis. Management Research Review, 41(1), 96-112. https://doi.org/10.1108/MRR-04-2017-0098
  • *Rombaut, E., & Guerry, M.-A. (2020). The effectiveness of employee retention through an uplift modeling approach. International Journal of Manpower, 41(8), 1199-1220. https://doi.org/10.1108/IJM-04-2019-0184
  • *Ryan, J. C. (2020). Retaining, resigning and firing: Bibliometrics as a people analytics tool for examining research performance outcomes and faculty turnover. Personnel Review, 50(5), 1316-1335. https://doi.org/10.1108/PR-12-2019-0676
  • Ryan, A. M., & Derous, E. (2019). The unrealized potential of technology in selection assessment. Journal of Work and Organizational Psychology, 35(2), 85-92. https://doi.org/10.5093/jwop2019a10
  • Rubio-Aparicio, M., Sánchez-Meca, J., Marín-Martínez, F., & López-López, J. A. (2018). Guidelines for reporting systematic reviews and meta-analyses. Anales de Psicología/Annals of Psychology, 34(2), 412-420. https://doi.org/10.6018/analesps.34.2.320131
  • Salgado, J. F., Blanco, S., & Moscoso, S. (2019). Subjective Well-being and Job Performance: Testing of a Suppressor Effect. Journal of Work and Organizational Psychology, 35(2), 93-102. https://doi.org/10.5093/jwop2019a9
  • Salgado, J. F., & Moscoso, S. (2022). Cross-cultural evidence of the relationship between subjective well-being and job performance: A meta-analysis. Journal of Work and Organizational Psychology, 38(1), 27-42. https://doi.org/10.5093/jwop2022a3
  • Savitz, A. (2013). The triple bottom line: How today’s best-run companies are achieving economic, social and environmental success – and how you can too. John Wiley & Sons.
  • Savitz, A. W., & Weber, K., (2006). The triple bottom line. Jossey-Bass.
  • *Schiemann, W. A., Seibert, J. H., & Blankenship, M. H. (2018). Putting human capital analytics to work: Predicting and driving business success. Human Resource Management, 57(3), 795-807. https://doi.org/10.1002/hrm.21843
  • *Simón, C., & Ferreiro, E. (2018). Workforce analytics: A case study of scholar-practitioner collaboration. Human Resource Management, 57(3), 781-793. https://doi.org/10.1002/hrm.21853
  • Smith, G. (2018). The AI delusion. Oxford University Press.
  • *Sri Harsha, B., Jithendra Varaprasad, A., & Pavan Sai Sujith, L. V. N. (2020). Early prediction of employee attrition. International Journal of Scientific and Technology Research, 9(3), 3374-3379.
  • *Sripathi, K., & Madhavaiah, C. (2018). Are HR professionals ready to adopt HR analytics? A study on analytical skills of HR professionals. Journal of Advanced Research in Dynamical and Control Systems, 10(8 Special Issue), 303-308.
  • Tursunbayeva, A., Di Lauro, S., & Pagliari, C. (2018). People analytics—a scoping review of conceptual boundaries and value propositions. International Journal of Information Management, 43, 224-247. https://doi.org/10.1016/j.ijinfomgt.2018.08.002
  • Ulrich, D., & Dulebohn, J. H. (2015). Are we there yet? What’s next for HR? Human Resource Management Review, 25(2), 188-204. https://doi.org/10.1016/j.hrmr.2015.01.004
  • Van Den Heuvel, S., & Bondarouk, T. (2016). The rise (and fall?) of HR analytics: The future application, value, structure, and system support. Journal of Organizational Effectiveness, 4(2), 127-148. https://doi.org/10.5465/ambpp.2016.10908abstract
  • *Vargas, R., Yurova, Y. V., Ruppel, C. P., Tworoger, L. C., & Greenwood, R. (2018). Individual adoption of HR analytics: A fine grained view of the early stages leading to adoption. International Journal of Human Resource Management, 29(22), 3046-3067. https://doi.org/10.1080/09585192.2018.1446181
  • *Wang, L., & Cotton, R. (2018). Beyond Moneyball to social capital inside and out: The value of differentiated workforce experience ties to performance. Human Resource Management, 57(3), 761-780. https://doi.org/10.1002/hrm.21856
  • *Wang, N., & Katsamakas, E. (2019). A network data science approach to people analytics. Information Resources Management Journal, 32(2), 28-51. https://doi.org/10.4018/IRMJ.2019040102
  • Weizenbaum, J. (1976). Computer power and human reason: From judgment to calculation. W. H. Freeman and Company.
  • *Xu, H., Yu, Z., Yang, J., Xiong, H., & Zhu, H. (2019). Dynamic talent flow analysis with deep sequence prediction modeling. IEEE Transactions on Knowledge and Data Engineering, 31(10), 1926-1939. https://doi.org/10.1109/TKDE.2018.2873341
  • Zerilli, J., Knott, A., Maclaurin, J., & Gavaghan, C. (2019). Transparency in algorithmic and human decision making: Is there a double standard? Philosophy and Technology, 32(4), 661-683. https://doi.org/10.1007/s13347-018-0330-6
  • *Zuo, Z., & Zhao, K. (2021). Understanding and predicting future research impact at different career stages—a social network perspective. Journal of the Association for Information Science and Technology, 72(4), 454-472. https://doi.org/10.1002/asi.24415