Condiciones suficientes para criterios de comparación estocástica
- Martínez Riquelme, Carolina
- Félix Belzunce Torregrosa Director/a
- José María Ruiz Gómez Director/a
Universidad de defensa: Universidad de Murcia
Fecha de defensa: 25 de noviembre de 2014
- Rosa Elvira Lillo Rodríguez Presidente/a
- José Candel Ato Secretario/a
- Alfonso Suárez Llorens Vocal
- Miguel López Díaz Vocal
- Antonio Di Crescenzo Vocal
Tipo: Tesis
Resumen
Uno de los principales objetivos de la Estadística es la comparación de variables aleatorias. Estas comparaciones están principalmente basadas en mediadas asociadas a dichas variables como las medias, medianas o varianzas. En muchas situaciones, estas comparaciones no resultan muy informativas, por lo que sería de interés establecer criterios de comparación más elaborados, lo que ha motivado el desarrollo de la teoría de ordenaciones estocásticas. Dicha teoría esta formada por diversos criterios que comparan distintas características asociadas a las variables, las cuáles se miden mediante funciones de interés en fiabilidad, riesgos y economía. Estas funciones están definidas en términos de ciertas integrales incompletas de las funciones cuantiles o de supervivencia. Desafortunadamente, dichas integrales no siempre tiene expresión explícita, lo cuál dificulta el estudio. A pesar de poder verificar otras ordenaciones, así como condiciones más fuertes, hay muchos casos que no están cubiertos por ninguna herramienta existente en la literatura, puesto que todas las ordenaciones son parciales. Por esta razón, una de las principales líneas de investigación dentro de este tópico es el estudio de condiciones suficientes para los distintos criterios que sean fáciles de verificar cuando las variables no se ordenen en ningún criterio más fuerte. Por ejemplo, el conocido orden creciente convexo se verifica cuando las integrales incompletas de las funciones de supervivencia están ordenadas. Sin embargo, existen muchas situaciones en las que estas integrales no tiene expresión analítica. En este caso, se puede verificar el orden estocástico, que es el criterio de comparación de localización más fuerte, el cuál se cumple cuando se ordenan las funciones de supervivencia. Este criterio es fácil de verificar siempre que las funciones de supervivencia tengan expresión explícita, pero incluso en los casos en los que no la tienen, existen condiciones suficientes en términos de las funciones de densidad. El problema es que, como ya hemos dicho, las variables no tienen por qué estar ordenadas estocásticamente. Afortunadamente, para el orden creciente convexo existen las conocidas condiciones de Karlin-Novikov que siempre se pueden verificar, ya que se establecen en términos de los puntos de corte entre las funciones de supervivencia, cuantiles o de densidad. Nuestro principal objetivo es continuar esta línea de investigación para algunos de los órdenes más importantes en la literatura: el vida media residual, el total time on test transform, el excess wealth y el expected proportional shortfall. En detalle, lo que hacemos es estudiar condiciones suficientes para estos criterios en aquellas situaciones en las que no se verifican los órdenes más fuertes (el razón de fallo, el estocástico, el dispersivo y el estrella). Menos el estocástico, como ya hemos mencionado, estos criterios más fuertes están definidos en términos de la monotonía del cociente (o la diferencia) de las funciones de supervivencia (o cuantiles). Nuestro objetivo es establecer condiciones suficientes para los criterios mencionados en términos de los extremos relativos de dichas funciones, lo cuál es menos restrictivo que la monotonía de las mismas. Otro logro es la ordenación de distintas familias paramétricas conocidas de interés en fiabilidad, riesgos y economía, las cuáles se ordenan aplicando los distintos resultados establecidos en la tesis. Por otro lado, la comparación estocástica de datos ordenados es también un área de investigación importante dentro de este tópico y establecemos varios resultados en esta línea. Por último, trabajamos en los órdenes estocásticos conjuntos. Estos criterios tienen en cuenta la estructura de dependencia entre las variables, lo cuál es de interés, por ejemplo, en situaciones en las que se quieren comparar los tiempos de vida de dos individuos o mecanismos que envejecen en el mismo ambiente y además dependen de dicho ambiente. También hacemos aportaciones en este área.