Physical stratigraphy and facies analysis of the castissent tecto-sedimentary unit
- Poyatos More, Miquel
- Eduard Remacha Grau Director/a
Universitat de defensa: Universitat Autònoma de Barcelona
Fecha de defensa: 25 de d’abril de 2014
- Luis Pedro Fernández President
- Oriol Oms Llobet Secretari/ària
- Manuel Zamorano Cáceres Vocal
Tipus: Tesi
Resum
The analysis of sedimentology, geometry and trajectory of successive deltaic clinoforms in outcrop-based studies or in high-resolution reflection seismic datasets has been widely employed as a tool to (1) infer relative sea-level changes and (2) to interpret short and long-term factors controlling basin margin evolution and timing of coarse-grained sediment delivery from continents to oceans. Sea-level (accommodation) and sediment supply-driven models have been developed mainly on large-scale seismic data, with less focus on sedimentary facies analysis and inferred depositional processes in operation at different positions along individual clinothems, and how these process change with trajectory and time. The Lower Eocene Castissent depositional sequences (Castissent Group, South-Central Pyrenees, Spain) mainly consist, in the Ainsa basin, in mouth-bar deposits and delta front sandstone lobes in transition to slope turbidites, deposited in a flood-dominated river-delta system. Deposition of these bodies was strongly controlled by the interaction between continental-derived hyperpycnal flows, the influence of shoreline processes over these flows and the local and regional tectonic activity, whose syn-sedimentary thrust-and-fold kinematics has not been explained in enough detail yet. Field mapping and correlation of high-frequency cycles show that they can be considered deltaic clinothems bounded by clinoform surfaces (their sigmoid bounding unconformities) whose formation is strictly controlled by tectonics. Moreover, high resolution seismic profiles tied to cored and dated boreholes data provide a means to link the depositional architecture (clinoform trajectory) to sediment dispersal processes and patterns. IODP Expedition 313 cored a set of Miocene clinothems offshore New Jersey to capture a complete record of sea-level change through integration of seismic stratigraphy, core and well logs, and chonostratigraphy. In the Expedition 313 dataset, this analysis can be performed over successive clinothems, with the assessment of sedimentary facies and process-based interpretations of environments of deposition down a single clinothem (Poyatos-Moré and Hodgson, 2012; Hodgson et al., in prep.). However, some outcrop-based studies like the Castissent sequences or subsurface-based studies like the New Jersey margin commonly treat accommodation and sediment supply as a 2D problem, by analyzing a margin profile parallel to the main sediment route. The results of these works have been compared with the lower Waterford Formation (Karoo basin, South-Africa), which provides a 3D outcrop-based case study of an exhumed shelf-to-slope system that allows the identification of clinoform rollover positions and depositional facies associations along three depositional dip profiles (Jones, 2013; Jones et al., 2013a and b). These parallel basin margin profiles of the lower Waterford Formation show all broadly similar trajectories, although with a significant along-margin variability. Thus, strike variability in basin margin physiography strongly affects sediment dispersal between shelf, slope and basin floor settings and it must be therefore considered together with process regime as a key controlling factor when attempting stratigraphic predictions of sediment bypass in shelf-margin successions.