The importance of sequential partial melting and fractional crystallization in the generation of syn‑D3 Variscan two‑mica granites from the Carrazeda de Ansiães area, northern Portugal

  1. R. J. S. Teixeira 1
  2. A. M. R. Neiva 2
  3. M. E. P. Gomes 1
  4. F. Corfu 3
  5. A. Cuesta 4
  6. I. W. Croudace 5
  1. 1 University of Trás-os-Montes e Alto Douro
  2. 2 Universidade de Coimbra
    info

    Universidade de Coimbra

    Coímbra, Portugal

    ROR https://ror.org/04z8k9a98

  3. 3 University of Oslo
    info

    University of Oslo

    Oslo, Noruega

    ROR https://ror.org/01xtthb56

  4. 4 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  5. 5 University of Southampton
    info

    University of Southampton

    Southampton, Reino Unido

    ROR https://ror.org/01ryk1543

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Título del ejemplar: New developments in Geochemistry. A tribute to Carmen Galindo

Volumen: 47

Número: 1-2

Páginas: 281-305

Tipo: Artículo

DOI: 10.1007/S41513-020-00160-X DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

En la región de Carrazeda de Ansiães, norte de Portugal, rocas metasedimentarias de edad Precámbrico y Ordovícico han sido intruídas por una suite granítica mesozonal durante las etapas tardi-cinemáticas de la orogenia Varisca. En esta suite se distinguen diez tipos de granitos en que los más jóvenes, constituidos por granitos de dos micas (G7–G10), se emplazan entre 318 ± 1 Ma y 316.2 ± 0.7 Ma, de acuerdo con dataciones U–Pb ID-TIMS en circón y monacita. Los granitos G7–G9 han sido afectados por la tercera fase de deformación ( D3) antes de su consolidación completa, como sugiere su foliación magmática interna NW–SE concordante con las estructuras regionales. El granito G10 tiene algunas características texturales distintivas, propias de una fuerte deformación frágil, probablemente debidas a su emplazamiento preferente en zonas de fallas tardías con dirección NNE-SSW. Los granitos G7–G9 tienen cantidades de moscovita iguales o mayores que las de biotita y contienen enclaves “surmicaceous”, xenolitos, “schlieren” y, raras veces, enclaves microgranudos. El granito G10 predominantemente moscovítico no contiene enclaves. Estos granitos variscos son peralumínicos, con valores de ASI entre 1.22 y 1.39, y de corindón normativo entre 2.79–4.39%, y presentan características típicas de granitos de tipo S. De hecho, el enriquecimiento en LREE con respecto a las HREE, las anomalías negativas de Eu y valores medios similares de (87Sr/86Sr)i, εNdt y δ18O para G7 (0.7156 ± 0.0005; − 8.5; 11.49 ‰) y G8 (0.7155 ± 0.0007; − 8.4; 11.39 ‰) muestran que estos dos tipos de granito son el producto de la fusión parcial secuencial del mismo material metasedimentario, y que el granito G8 correspondería a una mayor tasa de fusión parcial que el granito G7. Los granitos G8–G10 y sus minerales muestran una evolución por fraccionación que se puede confirmar mediante la modelización de elementos mayores y traza. Los espectros de REE subparalelos y la disminución de sus contenidos con la diferenciación, la isócrona Rb–Sr para G8, G9 y G10 (315.5 ± 5.4 Ma; MSWD = 1.3) y los valores relativamente uniformes de εNdt y δ18O sugieren que la cristalización fraccionada ha sido el principal mecanismo implicado, y habría tenido una duración inferior a 1 Ma. Los granitos especializados estanníferos G7 y G10 tienen contenidos de Sn ≥ 20 ppm, pero los principales filones de cuarzo con casiterita y wolframita cortan al granito G10, que contiene 31 ppm de Sn. La cristalización fraccionada ha sido responsable del aumento del contenido de Sn en los granitos de la serie G8–G10 y de sus micas.

Información de financiación

Financiadores

  • EU SOCFAC facility
    • HPRI-1999-CT-00108
  • PhD grant from FCT - Fundação para a Ciência e a Tecnologia, Portugal
    • SFRH/BD/17246/2004
  • Pole of the Geosciences Centre (CGeo) through FCT - Portuguese Foundation for Sciences and Technology
    • Projects UIDB/00073/2020
    • Projects UIDP/00073/2020

Referencias bibliográficas

  • Almeida, M. A., Martins, H. C., & Noronha, F. (2002). Hercynian acid magmatism and related mineralizations in Northern Portugal. Gondwana Research, 5, 423–434.
  • Antunes, I. M. H. R., Neiva, A. M. R., Silva, M. M. V. G., & Corfu, F. (2008). Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (central Portugal). Lithos, 103(3– 4), 445–465. https ://doi.org/10.1016/j.litho s.2007.10.003.
  • Arth, J. G. (1976). Behaviour of trace elements during magmatic processes— a summary of theoretical models and their applications. Journal of Research of the Unites States Geological Survey, 4, 41–47.
  • Azevedo, M. R., & Nolan, J. (1998). Hercynian late-post-tectonic granitic rocks from the Fornos de Algodres area (Northern Central Portugal). Lithos, 44(1–2), 1–20. https ://doi.org/10.1016/S0024 -4937(98)00019 -X.
  • Azevedo, M. R., & Valle Aguado, B. (2006). Origem e instalação de granitóides variscos na Zona Centro-Ibérica. In R. Dias, A. Araújo, P. Terrinha, & J. Kullberg (Eds.), Geologia de Portugal no contexto da Ibéria (pp. 107–121). Évora: Universidade de Évora.
  • Batchelor, R. A., & Bowden, P. (1985). Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48, 43–55.
  • Bea, F. (1996). Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology, 37(3), 521–552. https ://doi.org/10.1093/petro logy/37.3.521.
  • Bea, F., Montero, P., & Zinger, T. (2003). The nature and origin of the granite source layer of central iberia: evidence from trace element, Sr and Nd isotopes, and zircon age patterns. Journal of Geology, 111, 579–595.
  • Beetsma, J. J. (1995). The late Proterozoic/Paleozoic and Hercynian crustal evolution of the Iberian Massif, N Portugal. Unpublished PhD thesis, Vrije Universiteit Amsterdam, 223 p
  • Blattner, P., Abart, R., Adams, C. J., Faure, K., & Hui, L. (2002). Oxygen isotope trends and anomalies in granitoids of the Tibetan plateau. Journal of Asian Earth Sciences, 21(3), 241–250.
  • Breiter, K. (2012). Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts Central Europe. Lithos, 151, 105–121. https ://doi.org/10.1016/j. litho s.2011.09.022.
  • Bruyin, H., Westhuizen, W. A., & Schoch, A. E. (1983). The estimation of FeO, F, and H2O+ by regression in microprobe analysis of natural biotite. Journal of Trace and Microprobe Techniques, 1, 399–413.
  • Cao, J., Wu, Q., Yang, X., Deng, X., Li, H., Kong, H., & Xi, X. (2020). Geochemical factors revealing the differences between the Xitian and Dengfuxian composite plutons, middle Qin-Hang Belt: implications to the W-Sn mineralization. Ore Geology Reviews. https ://doi.org/10.1016/j.orege orev.2020.10335 3.
  • Carvalho, P. C. S., Neiva, A. M. R., Silva, M. M. V. G., & Corfu, F. (2012). A unique sequential melting mechanism for the generation of anatectic granitic rocks from the Penafiel area, northern Portugal. Lithos, 155, 110–124. https ://doi.org/10.1016/j.litho s.2012.08.019.
  • Chappell, B. W., & White, A. J. R. (1992). I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh Earth Sciences, 83, 1–26.
  • Charoy, B., & Noronha, F. (1996). Multistage growth of a rare-element volatile-rich microgranite at Argemela (Portugal). Journal of Petrology, 37, 73–94.
  • Chen, X., Liang, H., Richards, J. P., Huang, W., Zhang, J., Wu, J., & Sotiriou, P. (2018). Age and granite association of skarn W mineralization at Niutangjie district, South China Block. Ore Geology Reviews, 102, 268–283. https ://doi.org/10.1016/j.orege orev.2018.09.003.
  • Chicharro, E., Boiron, M. C., López-García, J. Á., Barfod, D. N., & Villaseca, C. (2016). Origin, ore forming fluid evolution and timing of the Logrosán Sn-(W) ore deposits (Central Iberian Zone, Spain). Ore Geology Reviews, 72, 896–913. https ://doi. org/10.1016/j.orege orev.2015.09.020.
  • Clayton, R. N., & Mayeda, T. K. (1963). The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 43–52.
  • Clemens, J. D. (2003). S-type granitic magmas—petrogenetic issues, models and evidence. Earth-Science Reviews, 61, 1–18.
  • Coke, C. J. M., Teixeira, R. J. S., Gomes, M. E. P., Corfu, F., & Rubio Ordóñez, A. (2011). Early Ordovician volcanism in Eucísia and Mateus areas, Central Iberian Zone, northern Portugal (Goldschmidt Conference Abstract). Mineralogical Magazine, 75(3), 685.
  • Corfu, F. (2004). U-Pb age, setting and tectonic significance of the anorthosite-mangerite-charnockite-granite suite, Lofoten-Vesterålen, Norway. Journal of Petrology, 56, 2081–2097.
  • Corfu, F., & Evins, P. M. (2002). Late Paleoproterozoic monazite and titanite U-Pb ages in the Archean Suomujärvi complex, N Finland. Precambrian Research, 116, 171–181.
  • Costa, M. M., Neiva, A. M. R., Azevedo, M. R., & Corfu, F. (2014). Distinct sources for syntectonic Variscan granitoids: insights from the Aguiar da Beira region, Central Portugal. Lithos, 196– 197, 83–98. https ://doi.org/10.1016/j.litho s.2014.02.023.
  • Croudace, I. W., & Gilligan, J. (1990). Versatile and accurate trace element determinations in iron-rich and other geological samples using X-ray fluorescence analysis. X-ray Spectrometry, 19, 117–123.
  • Croudace, I. W., & Thorpe, O. W. (1988). A low dilution, wavelength dispersive X-ray fluorescence procedure for the analysis of archaeological rock artefacts. Archaeometry, 30, 227–236.
  • Cruz, C., Sant’Ovaia, H., & Noronha, F. (2020). Magnetic mineralogy of variscan granites from northern Portugal: An approach to their petrogenesis and metallogenic potential. Geologica Acta. https :// doi.org/10.1344/Geolo gicaA cta20 20.18.5.
  • Davis, D. W., Blackburn, C. E., & Krogh, T. E. (1982). Zircon U-Pb ages from the Wabigoon. Manitou Lakes Region, Wabigoon Subprovince, northwest Ontario. Canadian Journal of Earth Sciences, 19, 254–266.
  • De Paolo, D. J. (1981). Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53, 189–202.
  • Dias, R., & Coke, C. (2006). O funcionamento dos grandes acidentes crustais no controlo da génese e instalação das rochas graníticas na Zona Centro Ibérica. In R. Dias, A. Araújo, P. Terrinha, & J. Kullberg (Eds.), Geologia de Portugal no contexto da Ibéria (pp. 1231–1234). Évora: Universidade de Évora.
  • Dias, G., Leterrier, J., Mendes, A., Simões, P. P., & Bertrand, J. M. (1998). U-Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos, 45(1–4), 349–369. https ://doi. org/10.1016/S0024 -4937(98)00039 -5.
  • Dias, G., Simões, P. P., Ferreira, N., & Leterrier, J. (2002). Mantle and crustal sources in genesis of late-Hercynian granitoids (NW Portugal). Geochemical and Sr-Nd isotopic constraints. Gondwana Research, 5, 287–305.
  • Didier, J., & Barbarin, B. (1991). The different types of enclaves in granites—nomenclature. In J. Didier & B. Barbarin (Eds.), Enclaves in granite pretrology developments in petrology (Vol. 13, pp. 19–23). Amsterdam: Elsevier.
  • Ding, J., Han, C., Xiao, W., Wang, Z., & Song, D. (2017). Geochronology, geochemistry and Sr-Nd isotopes of the granitic rocks associated with tungsten deposits in Beishan district, NW China, Central Asian Orogenic Belt: Petrogenesis, metallogenic and tectonic implications. Ore Geology Reviews, 89, 441–462. https :// doi.org/10.1016/j.orege orev.2017.06.018.
  • Feng, C., Wang, H., Xiang, X., & Zhang, M. (2018). Late Mesozoic granite-related W-Sn mineralization in the northern Jiangxi region, SE China: a review. Journal of Geochemical Exploration, 195, 31–48. https ://doi.org/10.1016/j.gexpl o.2018.06.008.
  • Ferreira, N., Iglésias, M., Noronha, F., Pereira, E., Ribeiro, A., & Ribeiro, M. L. (1987). Granitóides da zona Centro-Ibérica e seu enquadramento geodinâmico. In F. Bea, A. Carmina, J. C. Gonzalo, M. L. Plaza, & J. M. L. Rodrigues (Eds.), Geologia de los granitoids y rocas associadas del Macizo Hespérico, Libro Homenagem a L.C.G. Figueirola (pp. 37–53). Madrid: Editorial Rueda.
  • Förster, H.-J., & Romer, R. L. (2010). Carboniferous magmatism. In U. Linnemann & R. L. Romer (Eds.), The pre-mesozoic geology of saxo-thuringia—from the cadomian active margin to the variscan orogen (pp. 287–308). Stuttgart: Schweizerbart Science Publishers.
  • Frost, B. R., & Frost, C. D. (2008). A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11), 1955– 1969. https ://doi.org/10.1093/petro logy/egn05 4.
  • Garcia-Arias, M., & Stevens, G. (2017). Phase equilibrium modelling of granite magma petrogenesis: B. An evaluation of the magma compositions that result from fractional crystallization. Lithos, 277, 109–130. https ://doi.org/10.1016/j.litho s.2016.09.027.
  • Gioncada, A., Mazzuoli, R., & Milton, A. J. (2005). Magma mixing at Lipari (Aeolian Islands, Italy): insights from textural and compositional features of phenocrysts. Journal of Volcanology and Geothermal Research, 145, 97–118.
  • Gomes, M. E. P., & Neiva, A. M. R. (2002). Petrogenesis of tin-bearing granites from Ervedosa, northern Portugal: the importance of magmatic processes. Chemie Der Erde, 62(1), 47–72. https :// doi.org/10.1078/0009-2819-00002 .
  • Gomes, M. E. P., Teixeira, R. J. S., Neiva, A. M. R., & Corfu, F. (2014). Geoquímica e geocronologia dos granitóides da região de Bemposta- Picote, Nordeste de Portugal. Comunicações Geológicas, 101, 115–118.
  • Gutiérrez-Alonso, G., Fernández-Suárez, J., López-Carmona, A., & Gärtner, A. (2018). Exhuming a cold case: the early granodiorites of the northwest Iberian Variscan belt-A Visean magmatic flareup? Lithosphere, 10(2), 194–216. https ://doi.org/10.1130/L706.1.
  • Harris, N. B. W., Pearce, J. A., & Tindle, A. G. (1986). Geochemical characteristics of collision zone magmatism. In M. P. Coward & A. C. Ries (Eds.), Collision tectonics (pp. 67–81). London: The Geological Society of London.
  • Henderson, P. (1984). Chapter 1—general geochemical properties and abundances of the rare earth elements. In P. B. T.-D. in G. Henderson (Ed.), Rare Earth Element Geochemistry (Vol. 2, pp. 1–32). Elsevier. https ://doi.org/10.1016/B978-0-444-42148 -7.50006 -X
  • Hoefs, J. (2009). Stable Isotope Geochemistry (6th ed.). Berlin Heidelberg: Springer-Verlag.
  • Hoefs, J., & Emmermann, R. (1983). The oxygen isotopic composition of Hercynian granites and pre-Hercynian gneisses from the Schwarzwald, SW Germany. Contributions to Mineralogy and Petrology, 83, 320–329.
  • Holtz, F., & Barbey, P. (1991). Genesis of peraluminous granites II. Mineralogy and chemistry of the Tourem complex (northern Portugal). Sequential melting vs. restite unmixing. Journal of Petrology, 32, 959–978.
  • Huang, L.-C., & Jiang, S.-Y. (2014). Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202–203, 207–226. https ://doi.org/10.1016/j.litho s.2014.05.030.
  • Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision measurement of half-lives and specific activities of U235 and U238. Physical Review C, 4(5), 1889– 1906. https ://doi.org/10.1103/PhysR evC.4.1889.
  • Jiang, S., Peng, N., Huang, L., Xu, Y., Zhan, G., & Dan, X. (2015). Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Yanshi Xuebao/Acta Petrologica Sinica, 31(3), 639–655.
  • Jung, S., & Pfänder, J. A. (2007). Source composition and melting temperatures of orogenic granitoids: constrains from CaO/Na2O, Al2O3/ TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19, 859–870.
  • Krogh, T. E. (1973). A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochimica et Cosmochimica Acta, 37, 485–494.
  • Krogh, T. E. (1982). Improved accuracy of U-Pb zircon ages by creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta, 46, 637–649.
  • La Roche, H., Letterier, J., Grand Claude, P., & Marchal, M. (1980). A classification of volcanic and plutonic rocks using R1– R2 diagrams and major elements analyses—its relationships with current nomenclature. Chemical Geology, 29, 183–210.
  • Le Maitre, R., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., & Bateman, P. (Eds.). (2002). Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (2nd ed.). Cambridge: Cambridge University Press. https ://doi.org/10.1017/CBO97 80511 53558 1
  • Ledru, P., Courrioux, G., Dallain, C., Lardeaux, J.-M., Montel, J.-M., Vanderhaeghe, O., & Vitel, G. (2001). The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics, 342, 207–227.
  • Lehmann, B. (1990). Metallogeny of tin. Lecture Notes in Earth Sciences. Berlin: Springer-Verlag.
  • Li, C., Yan, J., Yang, C., Song, C.-Z., Wang, A.-G., & Zhang, D.-Y. (2020). Generation of leucogranites via fractional crystallization: a case study of the Jurassic Bengbu granite in the southeastern North China Craton. Lithos. https ://doi.org/10.1016/j.litho s.2019.10527 1.
  • Liew, T. C., & Hofmann, A. W. (1988). Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr study. Contributions to Mineralogy and Petrology, 98, 129–138.
  • Liu, Y., Zhang, L., Mo, X., Santosh, M., Dong, G., & Zhou, H. (2020). The giant tin polymetallic mineralization in southwest China: integrated geochemical and isotopic constraints and implications for Cretaceous tectonomagmatic event. Geoscience Frontiers. https ://doi.org/10.1016/j.gsf.2020.01.007.
  • London, D., Černý, P., Loomis, J. L., & Pan, J. L. (1990). Phosphorus in alkali feldspars of rare-element granitic pegmatites. American Mineralogist, 28, 771–786.
  • London, D., Wolf, M. B., Morgan, G. B., & Garrido, M. G. (1999). Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz Spain. Journal of Petrology, 40(1), 215–240. https ://doi.org/10.1093/petro j/40.1.215.
  • Ludwig, K. R. (1999). Isoplot/Ex version 2.03. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology under Special Publication, 1, 43 pp
  • Martins, H. C. B., Sant’Ovaia, H., & Noronha, F. (2009). Genesis and emplacement of felsic Variscan plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: an integrated geophysics and geochemical study (NW Iberian Peninsula). Lithos, 111, 142–155.
  • Martins, H. C. B., Sant’Ovaia, H., & Noronha, F. (2013). Late-Variscan emplacement and genesis of the Vieira do Minho composite pluton, Central Iberian Zone: constraints from U-Pb zircon geochronology, AMS data and Sr–Nd–O isotope geochemistry. Lithos, 162–163, 221–235. https: //doi.org/10.1016/j.litho s.2013.01.001.
  • Merino Martínez, E., Villaseca, C., Orejana, D., Pérez-Soba, C., Belousova, E., & Andersen, T. (2014). Tracing magma sources of three different S-type peraluminous granitoid series by in situ U-Pb geochronology and Hf isotope zircon composition: the Variscan Montes de Toledo batholith (central Spain). Lithos, 200–201(1), 273–298. https ://doi.org/10.1016/j.litho s.2014.04.013.
  • Miller, C. F., Hanchar, J. M., Wooden, J. L., Bennett, V. C., Harrison, T. M., Wark, D. A., & Foster, D. A. (1992). Source region of a granite batholiths: evidence from lower crustal xenoliths and inherited accessory minerals. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 49–62.
  • Miller, C. F., McDowell, S., & Mapes, R. W. (2003). Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31, 529–532.
  • Miller, C. F., Stoddard, E. F., Bradfish, L. J., & Dollase, W. A. (1981). Composition of plutonic muscovite: genetic implications. Canadian Mineralogist, 19(1), 25–34.
  • Monier, G., Mergoil-Daniel, J., & Labernardière, H. (1984). Générations successives de muscovites et feldspaths potassiques dans les leucogranites du massif de Millevaches (Massif Central francais). Bulletin de Minéralogie, 107(1), 55–68. https ://doi.org/10.3406/ bulmi .1984.7793.
  • Müller, A., Seltmann, R., Halls, C., Siebel, W., Dulski, P., Jeffries, T., et al. (2006). The magmatic evolution of the Land’s End pluton, Cornwall, and associated pre-enrichment of metals. Ore Geology Reviews, 28, 329–367.
  • Nachit, H., Razafimahefa, N., Stussi, J. M., & Carron, J. P. (1985). Composition chimique des biotites et typologie magmatique des granitoides. Comptes Rendus de l’Académie Des Sciences, Paris, Serie II, 301(11), 813–818.
  • Nash, W. P., & Crecraft, H. R. (1985). Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49(11), 2309–2322. https ://doi.org/10.1016/0016-7037(85)90231 -5.
  • Neiva, A. M. R. (1984). Geochemistry of tin-bearing granitic rocks. Chemical Geology, 43(3–4), 241–256. https ://doi. org/10.1016/0009-2541(84)90052 -4.
  • Neiva, A. M. R. (1994). Dating and geochemistry of tin-bearing granitic rocks and their minerals from NE of Gerez mountain, Northern Portugal. Boletín de la Sociedad Española de Mineralogía, 17, 65–82.
  • Neiva, A. M. R. (1998). Geochemistry of highly peraluminous granites and their minerals between Douro and Tamega valleys, northern Portugal. Chemie der Erde, 58, 161–184.
  • Neiva, A. M. R. (2002). Portuguese granites associated with Sn-W and Au mineralizations. Bulletin of the Geological Society of Finland, 74, 79–101.
  • Neiva, A. M. R., & Gomes, M. E. P. (2001). Diferentes tipos de granitos e seus processos petrogenéticos: granitos hercínicos portugueses. Memórias da Academia das Ciências de Lisboa, 31, 53–95.
  • Neiva, A. M. R., & Ramos, J. M. F. (2010). Geochemistry of granite aplite-pegmatite sills and petrogenetic links with granites, Guarda-Belmonte area, central Portugal. European Journal of Mineralogy, 22(6), 837–854.
  • Neiva, A. M. R., Silva, P. B., Corfu, F., & Ramos, J. M. F. (2011a). Sequential melting and fractional crystallization: granites from Guarda-Sabugal area, central Portugal. Geochemistry, 71(3), 227–245. https ://doi.org/10.1016/j.cheme r.2011.06.002.
  • Neiva, A. M. R., Silva, P. B., & Ramos, J. M. F. (2011b). Geochemistry of granitic aplite-pegmatite veins and sills and their minerals from the Sabugal area, central Portugal. Neues Jahrbuch für Mineralogie, 189(1), 49–74.
  • Neiva, A. M. R., Williams, I. S., Ramos, J. M. F., Gomes, M. E. P., Silva, M. M. V. G., & Antunes, I. M. H. R. (2009). Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica granites from the Gouveia area, central Portugal. Lithos, 111(3–4), 186–202. https ://doi. org/10.1016/j.litho s.2009.01.005.
  • Nekvasil, H. (1992). Ternary feldspar crystallization in high-temperature felsic magmas. American Mineralogist, 77, 592–604.
  • Nguyen, T. A., Yang, X., Thi, H. V., Liu, L., & Lee, I. (2019). Piaoac granites related W-Sn mineralization, northern Vietnam: evidences from geochemistry, zircon geochronology and Hf isotopes. Journal of Earth Science, 30(1), 52–69. https ://doi. org/10.1007/s1258 3-018-0865-6.
  • Oliveira, J., Pereira, E., Piçarra, J., Young, T., & Romano, M. (1992). O Paleozóico Inferior de Portugal: síntese da estratigrafia e da evolução paleogeográfica. In J. C. Gutiérrez Marco, J. Saavedra, & I. Rábano (Eds.), Paleozóico Inferior de Ibero-América (pp. 359–375). Badajoz: Universidad de Extremadura.
  • Otamendi, J. E., Nullo, F. E., Patiño Douce, A. E., & Fagiano, M. (1998). Geology, mineralogy and geochemistry of syn-orogenic anatectic granites from the Achiras Complex, Córdoba, Argentina: some petrogenetic and geodynamic implications. Journal of South American Earth Sciences, 11(4), 407–423.
  • Pan, X., Hou, Z., Zhao, M., Chen, G., Rao, J., Li, Y., et al. (2018). Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: implication for petrogenesis, geodynamical setting and mineralization. Lithos, 304–307, 155– 179. https ://doi.org/10.1016/j.litho s.2018.01.014.
  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.
  • Pereira, M. F., Castro, A., Fernández, C., & Rodríguez, C. (2018). Multiple Paleozoic magmatic-orogenic events in the Central Extremadura batholith (Iberian Variscan belt, Spain). Journal of Iberian Geology, 44(2), 309–333. https ://doi.org/10.1007/ s4151 3-018-0063-5.
  • Pin, C., & Santos Zalduegui, J. F. (1997). Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Analytica Chimica Acta, 339(1–2), 79–89. https ://doi.org/10.1016/S0003 -2670(96)00499 -0.
  • Poitrasson, F., Chenery, S., & Bland, D. J. (1996). Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth and Planetary Science Letters, 145(1–4), 79–96. https ://doi.org/10.1016/s0012 -821x(96)00193 -8.
  • Qiu, Z., Yan, Q., Li, S., Wang, H., Tong, L., Zhang, R., et al. (2017). Highly fractionated Early Cretaceous I-type granites and related Sn polymetallic mineralization in the Jinkeng deposit, eastern Guangdong, SE China: constraints from geochronology, geochemistry, and Hf isotopes. Ore Geology Reviews, 88, 718–738. https ://doi.org/10.1016/j.orege orev.2016.10.008.
  • Rieder, M., Cavazzini, G., D’Yakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., et al. (1998). Nomenclature of the micas. Canadian Mineralogist, 36(3), 905–912. https ://doi. org/10.1180/minma g.1999.063.2.13.
  • Roda-Robles, E., Villaseca, C., Pesquera, A., Gil-Crespo, P. P., Vieira, R., Lima, A., & Garate-Olave, I. (2018). Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geology Reviews, 95, 408–430. https ://doi. org/10.1016/j.orege orev.2018.02.027.
  • Romer, R. L., Förster, H.-J., & Hahne, K. (2012). Strontium isotopes— a persistent tracer for the recycling of Gondwana crust in the Variscan orogen. Gondwana Research, 22(1), 262–278. https :// doi.org/10.1016/j.gr.2011.09.005.
  • Romer, R. L., & Kroner, U. (2016). Phanerozoic tin and tungsten mineralization- Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31, 60–95. https ://doi.org/10.1016/j.gr.2015.11.002.
  • Ruiz, C., Fernández-Leyva, C., & Locutura, J. (2008). Geochemistry, geochronology and mineralisation potential of the granites in the Central Iberian Zone: the Jalama batholith. Chemie Der Erde, 68(4), 413–429. https ://doi.org/10.1016/j.cheme r.2006.11.001.
  • Schärer, U. (1984). The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case Himalaya. Earth and Planetary Science Letters, 67(2), 191–204. https ://doi.org/10.1016/0012-821X(84)90114 -6.
  • Silva, A. F., Rebelo, J. A., & Ribeiro, M. L. (1989). Notícia explicativa da Folha 11-C (Torre de Moncorvo). Lisboa: Serviços Geológicos de Portugal.
  • Silva, A. F., Rebelo, J. A., Santos, A.J., Cardoso, F., Ribeiro, M.L., Ribeiro, A., Cabral, J. & Estagiários da F.C.L. (1987/88). Carta Geológica de Portugal à escala 1:50 000 (Folha 11-C, Torre de Moncorvo). Serviços Geológicos de Portugal
  • Simons, B., Andersen, J. C. Ø., Shail, R. K., & Jenner, F. E. (2017). Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos, 278–281, 491–512. https ://doi.org/10.1016/j. litho s.2017.02.007.
  • Simons, B., Shail, R. K., & Andersen, J. C. O. (2016). The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England. Lithos, 260, 76–94. https ://doi.org/10.1016/j.litho s.2016.05.010.
  • Smith, W. D., Darling, J. R., Bullen, D. S., Lasalle, S., Pereira, I., Moreira, H., et al. (2019). Zircon perspectives on the age and origin of evolved S-type granites from the Cornubian Batholith, Southwest England. Lithos, 336–337, 14–26. https ://doi. org/10.1016/j.litho s.2019.03.025.
  • Sousa, L. (2000). Estudo da fracturação e das carcterísticas físicomecânicas de granitos da região de Trás-os-Montes com vista à sua utilização como rocha ornamental. Unpublished PhD thesis, University of Trás-os-Montes e Alto Douro, 479 p
  • Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https ://doi.org/10.1016/0012-821X(75)90088 -6.
  • Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362. https ://doi.org/10.1016/0012-821X(77)90060 -7.
  • Sylvester, A. G. (1998). Magma mixing, structure, and re-evaluation of the emplacement mechanism of Vradal pluton, central Telemark, southern Norway. Norsk Geologisk Tidsskrift, 78, 259–276.
  • Tassinari, C. C. G., Medina, J., & Pinto, M. S. (1995). Rb-Sr and Sm-Nd geochronology and isotope geochemistry of Central Iberian metasedimentary rocks (Portugal). Geologie en Mijnbouw, 75, 69–79.
  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Carlton: Blackwell Scientific Publication.
  • Teixeira, R. J. S. (2008). Mineralogia, petrologia e geoquímica dos granitos e seus encraves da região de Carrazeda de Ansiães. Unpublished PhD thesis, University of Trás-os-Montes e Alto Douro, 430 p
  • Teixeira, R. J. S., Neiva, A. M. R., Gomes, M. E. P., Corfu, F., Cuesta, A., & Croudace, I. W. (2012a). The role of fractional crystallization in the genesis of early syn-D 3, tin-mineralized Variscan two-mica granites from the Carrazeda de Ansiães area, northern Portugal. Lithos, 153, 177–191. https ://doi.org/10.1016/j.litho s.2012.04.024.
  • Teixeira, R. J. S., Coke, C., Dias, R., & Gomes, M. E. P. (2012b). U-Pb geochronology of detrital zircons from a metaconglomerate of the Formation of São Domingos (Group of Douro), Desejosa/ Castanheiro do Sul, Northern Portugal. European Mineralogical Conference, 1, 442.
  • Teixeira, R. J. S., Coke, C., Gomes, M. E. P. & Corfu, F. (2013a). IDTIMS U-Pb ages of Tremadocian-Floian ash-fall tuff beds from Marão and Eucísia areas, Northern Portugal. William Smith Meeting 2013: The First Century of Isotope Geochronology: the Legacy of Frederick Soddy & Arthur Holmes – Abstract Book, 152–154
  • Teixeira, R. J. S., Coke, C., Gomes, M. E. P., Dias, R., & Martins, L. O. (2013b). U-Pb geochronology of detrital zircons from metasedimentary rocks from Formation of Desejosa, Serra do Marão, Portugal. (Goldschmidt Conference Abstract). Mineralogical Magazine, 77(5), 2318.
  • Teixeira, R. J. S., Neiva, A. M. R., Silva, P. B., Gomes, M. E. P., Andersen, T., & Ramos, J. M. F. (2011). Combined U-Pb geochronology and Lu-Hf isotope systematics by LAM-ICPMS of zircons from granites and metasedimentary rocks of Carrazeda de Ansiães and Sabugal areas, Portugal, to constrain granite sources. Lithos, 125(1–2), 321–334. https ://doi.org/10.1016/j. litho s.2011.02.015.
  • Teixeira, R. J. S., Urbano, E. E. M. C., Gomes, M. E. P., Meireles, C. A., Corfu, F., Santos, J. F., et al. (2015). Interbedded quartz-muscovite layers in the ferriferous quartzites of the Lower Ordovician deposits of Moncorvo synclinorium (NE Portugal): an example of volcanogenic metasedimentary deposits? Comunicacões Geológicas, 102(Special Is), 31–39.
  • Tischendorf, G., Gottesmann, B., Foster, H.-J., & Trumbull, R. B. (1997). On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809–834.
  • Valle Aguado, B., Azevedo, M. R., Schaltegger, U., Martínez Catalán, J. R., & Nolan, J. (2005). U-Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. Lithos, 82(1–2 SPEC. ISS.), 169–184. https ://doi.org/10.1016/j.litho s.2004.12.012.
  • Villaseca, C., Barbero, L., & Rogers, G. (1998). Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos, 43, 55–79.
  • Villaseca, C., Downes, H., Pin, C., & Barbero, L. (1999). Nature and composition of the lower continental crust in central spain and the granulite-granite linkage: inferences from Granulitic Xenoliths. Journal of Petrology, 40(10), 1465–1496.
  • Villaseca, C., Merino, E., Oyarzun, R., Orejana, D., Pérez-Soba, C., & Chicharro, E. (2014). Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Research, 245, 131–145. https ://doi.org/10.1016/j.preca mres.2014.02.006.
  • Villaseca, C., Pérez-Soba, C., Merino, E., Orejana, D., López-García, J. A., & Billstrom, K. (2008). Contrasting crustal sources for peraluminous granites of the segmented Montes de Toledo Batholith (Iberian Variscan Belt). Journal of Geosciences, 53(3–4), 263–280. https ://doi.org/10.3190/jgeos ci.035.
  • Wang, F., Bagas, L., Jiang, S., & Liu, Y. (2017). Geological, geochemical, and geochronological characteristics of Weilasituo Snpolymetal deposit, Inner Mongolia, China. Ore Geology Reviews, 80, 1206–1229. https ://doi.org/10.1016/j.orege orev.2016.09.021.
  • Wang, L.-X., Ma, C.-Q., Zhang, C., Zhang, J.-Y., & Marks, M. A. W. (2014). Genesis of leucogranite by prolonged fractional crystallization: a case study of the Mufushan complex South China. Lithos, 206–207(1), 147–163. https ://doi.org/10.1016/j.litho s.2014.07.026.
  • Wasserburg, G. J., Jacobsen, S. B., De Paolo, D. J., McCullock, M. T., & Wen, T. (1981). Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45, 2311–2323.
  • Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.
  • Williamson, B. J., Shaw, A., Downes, H., & Thrillwall, M. F. (1996). Chemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central. Chemical Geology, 127, 25–42.
  • Xu, B., Jiang, S.-Y., Wang, R., Ma, L., Zhao, K.-D., & Yan, X. (2015). Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos, 218–219, 54–72. https ://doi.org/10.1016/j.litho s.2015.01.004.
  • Yurimoto, H., Duke, E. F., Papike, J. J., & Shearer, C. K. (1990). Are discontinuous chondrite-normalized REE patterns in pegmatitic granitic systems the results of monazite fractionation? Geochimica et Cosmochimica Acta, 54, 2141–2145.
  • Zhang, L.-X., Wang, Q., Zhu, D.-C., Li, S.-M., Zhao, Z.-D., Zhang, L.-L., et al. (2019). Generation of leucogranites via fractional crystallization: a case from the Late Triassic Luoza batholith in the Lhasa Terrane, southern Tibet. Gondwana Research, 66, 63–76. https ://doi.org/10.1016/j.gr.2018.08.008.