On Unbounded Motions in a Real Analytic Bouncing ball Problem

  1. Stefano Marò 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Any de publicació: 2022

Volum: 21

Número: 4

Tipus: Article

Altres publicacions en: Qualitative theory of dynamical systems

Resum

We consider the model of a ball elastically bouncing on a racket moving in the vertical direction according to a given periodic function f (t). The gravity force is acting on the ball. We prove that if the function f (t) belongs to a class of trigonometric polynomials of degree 2 then there exists a one dimensional continuum of initial conditions for which the velocity of the ball tends to infinity. Our result improves a previous one by Pustyl’nikov and gives a new upper bound to the applicability of KAM theory to this model.

Referències bibliogràfiques

  • 1. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, New York (1955)
  • 2. Dolgopyat, D.: Bouncing balls in non-linear potentials. Discrete Contin. Dynam. Syst. 22, 165–182 (2008)
  • 3. Herman, M.R.: Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 1. Astérisque 103-104 (1983)
  • 4. Herman, M.R.: Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 2. Astérisque 144, (1986)
  • 5. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vibration 84, 173–189 (1982)
  • 6. Kunze, M., Ortega, R.: Complete orbits for twist maps on the plane: Extensions and applications. J. Dyn. Diff. Equat. 23, 405–423 (2011)
  • 7. Lichtenberg, A.J., Lieberman, M.A.: Regular and chaotic dynamics Springer Berlin (1992)
  • 8. MacKay, R.S., Percival, I.C.: Converse KAM - theory and practice. Comm. Math. Phys. 94, 469 (1985)
  • 9. Ma, Z., Xu, J.: A C1+α mechanical counterexample to Moser’s twist theorem. Z. Angew. Math. Phys. 72, 186 (2021)
  • 10. Marò, S.: Coexistence of bounded and unbounded motions in a bouncing ball model. Nonlinearity 26, 1439–1448 (2013)
  • 11. Marò, S.: A mechanical counterexample to KAM theory with low regularity. Physica D 283, 10–14 (2014)
  • 12. Marò, S.: Chaotic dynamics in an impact problem. Ann. Henri Poincaré 16, 1633–1650 (2015)
  • 13. Marò, S.: Diffusion and chaos in a bouncing ball model. Z. Angew. Math. Phys. 71, 78 (2020)
  • 14. Pustyil’nikov, L.D.: Poincaré models, rigorous justification of the second element of thermodynamics on the basis of mechanics, and the Fermi acceleration mechanism. Russian Math. Surveys 50, 145–189 (1995)
  • 15. Qian, D., Torres, P.J.: Periodic motions of linear impact oscillators via the successor map. SIAM J. Math. Anal. 36, 1707–1725 (2005)
  • 16. Ruiz-Herrera, A., Torres, P.J.: Periodic solutions and chaotic dynamics in forced impact oscillators. SIAM J Appl. Dyn. Syst. 12, 383–414 (2013)
  • 17. Siegel, C.L., Moser, J.K.: Lectures on celestial mechanics. Springer-Verlag, Berlin (1971)
  • 18. Zhou, J.: A piecewise smooth Fermi-Ulam pingpong with potential. Ergodic Theory Dynam. Syst. 42, 1847–1870 (2022)