Influence of production system and feeds on performance, carcass traits and estimated energy balance of autochthonous Gochu Asturcelta pigs

  1. de la Roza-Delgado, Begoña 1
  2. Feito, Isabel 1
  3. Fuente-Maqueda, Francisco 1
  4. Modroño, Sagrario 1
  5. Argamentería, Alejandro 2
  6. Ciordia, Marta 1
  1. 1 Regional Service for Agrifood Research and Development (SERIDA), Ctra AS-267, PK 19, 33300 Villaviciosa (Asturias), Spain
  2. 2 Association of Asturian Autochthonous Gochu Asturcelta (ACGA). Camino de La Masanti, 53. 33518 La Masanti, Sariego (Asturias), Spain
Revista:
Spanish journal of agricultural research

ISSN: 1695-971X 2171-9292

Año de publicación: 2022

Volumen: 20

Número: 3

Tipo: Artículo

DOI: 10.5424/SJAR/2022203-18194 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Spanish journal of agricultural research

Resumen

Aim of study: To assess the effects of rearing system (extensive, ES; semi-extensive, SES) and feeds (grazed woodland, acorns, chestnuts, compound feed) on the performance, carcass traits and energetic balance of autochthonous Gochu Asturcelta pigs. Area of study: Asturias (Spain). Material and methods: In two successive years, a total of 58 immunocastrated Gochu Asturcelta pigs (25 females, 33 males), with an initial weight of 93.39 ± 3.36 kg and mean age of 6.82 ± 0.24 months, were randomly divided between ES and SES plots from July to December. ES pigs grazed woodland, acorns (Quercus robur L.) and chestnuts (Castanea sativa Mill.) and they were given additionally 1.5 kg compound-feed/pig·day. SES animals received only 2.5 kg compound-feed/pig·day. Chemical composition and metabolizable energy (ME) of feeds, energetic balance, growth performances and pig carcass traits were analysed. Main results: Acorns and chestnuts were both very close in their chemical composition, except for the polyphenol content and profile, and had a lower omega-6/omega-3 ratio than compound feeds. Live weight for the ES pigs was 25% lower and carcass weight 30% lower than for SES pigs (p<0.001). Total ME requirement (MJ/day) was lower in ES than in SES pigs. Research highlights: The productive and carcass parameters observed are a consequence of a lower energy intake for pigs in ES than in SES, it being necessary to drastically reduce the stocking rate to increase weight gain and to improve carcass traits when Gochu Asturcelta pigs are reared in ES.

Referencias bibliográficas

  • Álvarez MA, García P, Valderrábano J, 2004. Tipificación, cartografía y evaluación de los pastos españoles: Cartografía de los pastos de Asturias, INDUROT-Universidad de Oviedo, 139 pp. Oviedo (Spain).
  • Argamentería A, 2012. Alimentación del Gochu Asturcelta. In: Manual del Gochu Asturcelta, pp: 81-101, SERIDA, Villaviciosa, Spain.
  • Argamentería A, Menéndez-Fernández J, 2012. La recuperación del Gochu Asturcelta, In: Manual del Gochu Asturcelta, pp: 35-46, SERIDA, Villaviciosa, Spain.
  • Astorga-España MS, Rodríguez-Galdón B, Díaz-Romero C, Rodríguez-Rodríguez E, 2011. Fatty acid profile in varieties of chestnut fruits from Tenerife (Spain). CYTA-J Food 9 (1): 77-81. https://doi.org/10.1080/19476331003686858
  • Barea R, Nieto R, Aguilera JF, 2007a. Effects of the dietary protein content and the feeding level on protein and energy metabolism in Iberian pigs growing from 50 to 100 kg body weight. Animal 1(3): 357-365. https://doi.org/10.1017/S1751731107666099
  • Barea R, García-Valverde R, Nieto R, Aguilera JF, 2007b. Recomendaciones de proteína, aminoácidos y energía para el cerdo Ibérico en crecimiento-cebo. Avances en Tecnología Porcina 4(6): 26-38.
  • Barreira JCM, Ferreira ICFR, Oliveira MBPP, Pereira JA, 2008. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem 107: 1106-1113. https://doi.org/10.1016/j.foodchem.2007.09.030
  • Bellat JL, Dasque J (eds.), 2019. Livre blanc de la châtaigne en Europe 2019. EUROCASTANEA-AREFLH, France. 58 pp.
  • Buxadé C, 1984. La explotación porcina extensiva. In: Ganado porcino. pp: 587-616. Mundi Prensa, Madrid. ISBN: 84-7114-147-7
  • Castro M, Teixeira A, Fernández-Núñez E, 2021. The nutritive value of different Mediterranean browse species used as animal feeds under oak silvopastoral systems in Northern Portugal. Agroforest Syst 95: 269-278. https://doi.org/10.1007/s10457-020-00588-1
  • Ciordia M, Feito I, Díaz T, Tamargo L, Argamentería A, 2013. Effect of grazing by native pig, Gochu Asturcelta, on vegetation in chestnut coppice. Abstracts II European Congress on Chestnut, Debrecen (Hungría), Oct 9-12.
  • Crovetti A, Bozzi R, Nardi L, Gallo M, Buttazzoni L, Franci O, 2007. Pedigree analysis of Cinta Senese breed. Proc VI Int Symp on the Mediterranean Pig. Messina, Capo d'Orlando, (Italy), Oct 11-13. pp: 35-40.
  • D'Alessandro E, Fontanesi L, Liotta L, Davoli R, Chiofalo V, Russo V, 2007. Analysis of the MC1R gene in the Nero Siciliano pig breed and usefulness this locus for breed traceability. Vet Res Commun 31 (1): 389-392. https://doi.org/10.1007/s11259-007-0063-y
  • Daza A, 2001. Sistemas de explotación. In: Porcino Ibérico: aspectos claves; Buxadé C, A Daza (eds.). pp. 151-176. Mundi Prensa, Madrid. ISBN: 84-7114-661-4
  • De la Roza-Delgado B, Cueto MA, Menéndez J, Argamentería A, 2012. Preliminary results of productivity of Gochu Asturcelta's breed in semiextensive systems. Opt Méditer Ser A 101: 219-223.
  • Díaz-González TE, 2015. Guía para la identificación de los bosques, matorrales y series de vegetación (vegetación potencial) de Asturias mediante bioindicadores fitocenológicos. Boletín de Ciencias de la Naturaleza, RIDEA 53: 5-94.
  • Edwards SA, 2003. Intake of nutrients from pasture by pigs. Proc of the Nutrition Society 62(2): 257-265. https://doi.org/10.1079/PNS2002199
  • Egerszegi I, Rátky J, Solti L, Brüssow KP, 2003. Mangalica - An indigenous swine breed from Hungary (Review). Archiv für Tierzucht 46 (3): 245-256. https://doi.org/10.5194/aab-46-245-2003
  • Fuente-Maqueda F, Rodríguez A, Majada J, Fernández B, Feito I, 2020. Methodology optimization for the analysis of phenolic compounds in chestnut (Castanea sativa Mill.). Food Sci Technol Int 26 (6): 520-534. https://doi.org/10.1177/1082013220911782
  • García-Valverde R, Nieto R, Lachica M, Aguilera JF, 2007. Effects of herbage ingestion on the digestion site and nitrogen balance in heavy Iberian pigs fed on an acorn-based diet. Livest Sci 112: 63-77. https://doi.org/10.1016/j.livsci.2007.01.161
  • Hansson L, Lundstrom K, 1989. Incorporating meat quality in grading systems for pigs. Proc. EAAP-Symp of the Commission on Pig Production. Helsinki, (Finland), 1 July 1988, 41: 52-59.
  • Hernández-Suárez M, Rodríguez B, Ríos D, Díaz D, Rodríguez E, 2012. Sugars, organic acids and total phenols in varieties of chestnut fruits from Tenerife (Spain). Food Nutr Sci 3: 705-715. https://doi.org/10.4236/fns.2012.36096
  • Hoffman WS, 1937. A rapid photoelectrical method for the determination of glucose in blood and urine. J Biol Chem 120: 51-55. https://doi.org/10.1016/S0021-9258(18)74360-3
  • Hussain K, Jaweed TH, 2017. Review of Pasture Landscapes and Nature Conservation edited by Bernd Redecker, Peter Finck, Werner Hardtle, Uwe Riecken and Eckhard Schroder. Pastoralism 7: 25. https://doi.org/10.1186/s13570-017-0097-x
  • Lachica M, Aguilera JF, 2000. Estimation of the energy costs of locomotion in the Iberian pig (Sus mediterraneus). B J Nutr 83, 35-41. https://doi.org/10.1017/S0007114500000064
  • Lee HJ, Choi IH, Kim DH, Amanullah SM, Kim SC, 2016. Nutritional characterization of tannin rich chestnut (Castanea) and its meal for pig. J Appl Anim 44(1): 258-262. https://doi.org/10.1080/09712119.2015.1031779
  • López-Bote C, Rey AI, Isabel B, 2001. Alimentación del cerdo Ibérico en la dehesa. In: Porcino Ibérico: aspectos claves; Buxade C, Daza A (eds.). pp. 215-246. Mundi Prensa, Madrid. ISBN: 84-7114-661-4.
  • Maiorano G, 2009. Swine production in Italy and research perspectives for the local breeds. Slovak J Anim Sci 42: 159-166.
  • Nieto R, García MA, Aguilera JF, 2002. Determinación de la digestibilidad y del valor energético de la castaña en el cerdo Ibérico. Solo Cerdo Ibérico 9: 51-56.
  • Noblet J, Pérez JM, 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J Anim Sci 71: 3389-3398. https://doi.org/10.2527/1993.71123389x
  • Noblet J, Shi XS, Dubois S, 1993. Energy cost of standing activity in sows. Liv Prod Sci 34(1-2): 127-136. https://doi.org/10.1016/0301-6226(93)90041-F
  • Palmquist DL, Jenkins TC, 2003. Challenges with fats and fatty acid methods. J Anim Sci 81: 3250-3254. https://doi.org/10.2527/2003.81123250x
  • Peinado B, Poto A, Gil F, López G, 2004. Characteristics of the carcass and meat of the Chato Murciano pig. Livest Prod Sci 90: 285-292. https://doi.org/10.1016/j.livprodsci.2004.07.018
  • Pereira-Lorenzo S, Ramos-Cabrera AM, Díaz-Hernández MB, Ciordia-Ara M, Ríos-Mesa D, 2006. Chemical composition of chestnut cultivars from Spain. Sci Hort 107: 306-314. https://doi.org/10.1016/j.scienta.2005.08.008
  • Rodríguez- Estévez V, García A, Perea J, Mata C, Gómez AG, 2007. Producción de bellota en la dehesa: factores influyentes. Archivos de Zootecnia 56: 25-43.
  • Rodríguez-Estévez V, Sánchez-Rodríguez M, García A, Gómez-Castro AG, 2010. Feed conversion rate and estimated energy balance of free grazing Iberian pigs. Livest Sci 132: 152-156. https://doi.org/10.1016/j.livsci.2010.05.019
  • Rose AK, Greeenberg CH, Fearer TM, 2011. Acorn production prediction models for five common oak species of the Eastern United States. J Wildlife Manage 76: 750-758. https://doi.org/10.1002/jwmg.291
  • Royo LJ, Álvarez I, Fernández I, Pérez-Pardal L, Álvarez-Sevilla A, Santos E, et al., 2007. Genetic characterisation of celtic-iberian pig breeds using microsatellites. Proc VI Int Symp on the Mediterranean Pig, Messina, Capo d'Orlando, (Italy), Oct 11-13. pp: 31-34.
  • Salomonsson AC, Theander O, Westerlund E, 1984. Chemical characterization of some Swedish cereal whole meal and brand factors. Swed J Agric Res 14: 111-117.
  • Simopoulos AP, 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56: 365-379. https://doi.org/10.1016/S0753-3322(02)00253-6
  • Simopoulos AP, 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233: 674-688. https://doi.org/10.3181/0711-MR-311
  • Soldado A, Fernández O, Martínez A, de la Roza-Delgado B, 2003. Estudio comparativo de métodos analíticos para la determinación del contenido en almidón en ensilados de maíz. Proc XLIII Reunión Científica de la SEEP, Granada, (Spain), May 26-30. pp. 297-302.
  • Sukhija PS, Palmquist DL, 1988. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem 36: 1202-1206. https://doi.org/10.1021/jf00084a019
  • Tejerina D, García-Torres S, Cabeza de Vaca M, Vázquez FM, Cava R, 2011. Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the ''montanera" feeding of Iberian pig: Intra- and inter-annual variations. Food Chem 124: 997-1004. https://doi.org/10.1016/j.foodchem.2010.07.058
  • Temperan S, Lorenzo JM, Castiñeiras BD, Franco I, Carballo J, 2014. Carcass and meat quality traits of Celta heavy pigs. Effect of the inclusion of chestnuts in the finishing diet. Span J Agric Res 12: 694-707. https://doi.org/10.5424/sjar/2014123-5057
  • Van Soest PJ, Robertson JB, Lewis BA, 1991. Symp: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10): 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2