Interpretation of petrographic anisotropy in ornamental granites based on P wave velocity measurements

  1. L. Calleja
  2. V. G. Ruiz de Argandoña 1
  3. N. Sánchez-Delgado
  4. A. Setién
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Journal:
Materiales de construcción

ISSN: 0465-2746

Year of publication: 2020

Volume: 70

Issue: 339

Type: Article

DOI: 10.3989/MC.2020.15419 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Materiales de construcción

Sustainable development goals

Abstract

The existence of a possible anisotropy, determined by the orientation of any mineral or by microcrack network in granite rock, isn´t easily detected by the naked eye. Five granitic rocks from Galicia (Spain), namely Albero, Gris Alba, Gris Mondariz, Rosa Porriño and Traspielas, were characterized petrographically by means of textural and mineralogical studies, using optical polarizing microscopy, and fractographic studies were carried out under scanning electron microscopy. Longitudinal wave propagation velocity was measured in three orthogonal directions on cubic samples, oriented according to rift surface (known in quarry works like the preferential partition surface visible in the blocks). Vp was measured on dry and water saturated samples. All the dry samples showed an anisotropic behaviour of Vp. Models of microcrack network distribution and possible mineral grain orientation were developed based on the obtained data.

Bibliographic References

  • Calleja, L.; Rodríguez-Rey, A.; Ruiz de Argandoña, V.G.; Sánchez-Delgado, N.; Camino, C. (2014) Textural anisotropies characterization of granitic rocks using P wave velocities. In: Rock Engineering and Rock Mechanics: Structures in and on Rock Masses. 173-177. Eurock Vigo. Taylor & Francis Group, London, (2014). https://doi.org/10.1201/b16955-26
  • Ziegler, M.; Loew, S.; Bahat, D. (2014) Growth of exfoliation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps). Tectonophysics. 626, 1-20. https://doi.org/10.1016/j.tecto.2014.03.017
  • Yarahmadi, R.; Bagherpour, R.; Taherian, S.G.; Sousa, L.M.O. (2018) Discontinuity modelling and rock block geometry identification to optimize production dimension stone quarries. Eng. Geol. 232, 22-33. https://doi.org/10.1016/j.enggeo.2017.11.006
  • Yarahmadi, R.; Bagherpour, R.; Khademian, A.; Sousa, L.M.O.; Almasi, S.N.; Esfahane, M.M. (2019). Determining the optimum cutting direction in granite quarries through experimental studies: a case study of a granite quarry. Bull. Eng. Geol. Environ. 78, 459-467. https://doi.org/10.1007/s10064-017-1158-5
  • Lama, R.D.; Vutukuri, V.S. (1978) Handbook of mechanical properties of rocks (Testing techniques and results). Vol. II. Trans Tech. Publications, (1978).
  • Barton, N. (2007) Rock Quality, Seismic Velocity, Attenuation and Anisotropy. London: CRC Press. https://doi.org/10.1201/9780203964453
  • Sousa, L.M.O.; Suárez del Río, L.M.; Calleja, L.; Ruiz de Argandoña, V.G.; Rodriguez-Rey, A. (2005) Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng. Geol., 77 [1-2], 153-158. https://doi.org/10.1016/j.enggeo.2004.10.001
  • Río, L.M. del; López, F.; Esteban, F.J.; Tejado, J.J.; Mota, M.; González, I.; San Emeterio, J.L.; Ramos, A. (2006) Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain). Ultrasonics. 44, Supplement, e1057-e1061. https://doi.org/10.1016/j.ultras.2006.05.098 PMid:16814343
  • Freire-Lista, D.M.; Fort, R. (2017). Exfoliation microcracks in building granite. Implications for anisotropy. Eng. Geol. 220, 85-93. https://doi.org/10.1016/j.enggeo.2017.01.027
  • Kern, H.; Mengel, K.; Strauss, K.W.; Ivankina, T.I.; Nikitin, A.N.; Kukkonen, I.T. (2008) Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu Scientific Drill Hole: evidence from lab measurements and modeling. Phys. Earth Planet. Int.175 [3-4], 151-166. https://doi.org/10.1016/j.pepi.2009.03.009
  • Kern, H.; Mengel, K. (2011) P and S-wave velocities and velocity anisotropy of core samples from the Outokumpu 2500m crustal section: implications for the nature of seismic reflections. In: Geological Survey of Finland, Special Paper 51, 83-94.
  • Vázquez, P.; Alonso, F. J.; Esbert, R. M.; Ordaz, J. (2010) Ornamental granites: Relationships between P-waves velocity, water capillary absorption and the crack network. Const. Build. Mater. 24 [12], 2536-2541. https://doi.org/10.1016/j.conbuildmat.2010.06.002
  • Wang, H.; Pan, J.; Wang, S.; Zhu, H. (2015) Relationship between macrofracture density, P-wave velocity and permeability of coal. J. Appl. Geophys. 117, 111-117. https://doi.org/10.1093/gji/ggu384
  • Wang, X-q.; Schubnel, A.; Fortin, J.; Gueguen, Y.; Ge, H-q. (2012) Vp/Vs ratio: dispersion and anisotropy effects in cracked rocks. Geophys. Res. Abst. 14, EGU2012, Vienna, Austria, 5733.
  • Louis, L.; David, Ch.; Spaceek, P.; Wong, T.-f; Fortin, J.; Song, S.R. (2012) Elastic anisotropy of core samples from the Taiwan Chelungpu Fault Drilling Project (TCDP): direct 3-D measurements and weak anisotropy approximations. Geophys. J. Int. 188 [1], 239-252. https://doi.org/10.1111/j.1365-246X.2011.05247.x
  • Dai, F.; Xia, K.W. (2013) Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite. Int. J. Rock Mech. Min. Sci. 60, 57-65. https://doi.org/10.1016/j.ijrmms.2012.12.035
  • Fort, R.; Varas, M.J.; Alvarez de Buergo, M.; Martin-Freire, D. (2011) Determination of anisotropy to enhance the durability of natural stone. J. Geophys. Eng. 8 [3], S132-S144.. https://doi.org/10.1088/1742-2132/8/3/S13
  • Freire-Lista, D.M.; Fort, R. (2016). Causes of scaling on bush-hammered heritage ashlars: a case study-Plaza Mayor of Madrid (Spain). Environ. Earth Sci. 75, 932. https://doi.org/10.1007/s12665-016-5688-0
  • Godfrey, N.J.; Christensen, N.I.; Okaya, D.A. (2000) Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. J. Geophys. Res., 105 [B12], 27991-28007). https://doi.org/10.1029/2000JB900286
  • Cholach, P.Y.; Schmitt, D.R. (2006) Intrinsic elasticity of a textural transverserly isotropic muscovite aggregate: Comparisons to the seismic anisotropy of schists and shales. J. Geophys. Res. 111, B09410. https://doi.org/10.1029/2005JB004158
  • Ji, S.; Shao, T.; Salisbury, M.H.; Sun, Sh.; Michibayashi, K.; Zhao, W.; Long, Ch.; Liang, F.; Satsuwkawa, T. (2014) Plagioclase preferred orientation and induced seismic anisotropy in mafic igneous rocks. J. Geophys. Res. 119 [4], 8064-8088. https://doi.org/10.1002/2014JB011352
  • Kern, H.; Ivankina, T.; Nikitin, A.; Lokajícek, T.; Pros, Z. (2008) The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics. 457 [3-4], 143-149. https://doi.org/10.1016/j.tecto.2008.06.015
  • Karlqvist, R.; Lassila, I.; Hæggström, E.; Pesonen, L.J. (2012) Ultrasonic velocity anisotropy technique to enhance seismic surveys and ore prospecting. In: IEEE International Ultrasonics Symposium Proceeding. 2674-2677. https://doi.org/10.1109/ULTSYM.2012.0670
  • Ong, O.; Schmitt, D.R.; Kofman, R. (2015) Seismic anisotropy and elastic properties of a VTI medium. In: Third International Workshop on Rock Physics. Perth, Western Australia.
  • Sun, S.; Ji, S.; Wang, Q.; Salisbury, M.; Kern, H. (2012) P-wave velocity differences between surface-derived and core samples from the Sulu ultrahigh-pressure terrane: Implications for in situ velocities at great depths. Geology. 40 [7], 651-654. https://doi.org/10.1130/G33045.1
  • Martínez Catalán, J.R.; Pérez-Estaún, A.; Bastida, F.; Pulgar, J.A.; Marcos, A. (1990) Structure. In: Dallmeyer R.D., Garcia E.M. (eds) Pre-Mesozoic Geology of Iberia. IGCP-Project 233 (Terranes in the Circum-Atlantic Paleozoic Orogens). Heidelberg, Berlin: Springer. https://doi.org/10.1007/978-3-642-83980-1_9
  • UNE-EN 1936 (2007) Natural Stone test methods. Determination of real density and apparent density of total and open porosity. European Committee for Standardization. (2007).
  • UNE-EN 14579 (2007) Natural Stone test methods. Determination of sound speed propagation. European Committee for Standardization. (2005).
  • Bauer, S.J.; Johnson, B. (1979) Effects of slow heating on the physical properties of the Westerly and Charcoal granites. In: Proc. 20th U.S. Symp. on Rock Mechanics, 12 pp.
  • Ruiz de Argandoña, V.G.; Calleja, L.; Montoto, M. (1985) Determinación experimental del umbral de microfisuración térmica de la roca matriz o intact rock. Trabajos de Geología. 15, 299-306.
  • Calleja, L.; Ruiz de Argandoña, V.G.; Rodríguez-Rey, A.; Montoto, M. (1987) Thermal microfissuration development in a granodioritic rock: A qualitative assesment by non destructive techniques. In: Sixth Meeting of the European Clay Groups, Euroclay' 87. 13-16.
  • Calleja, L. (1991) Variación de propiedades físicas en rocas cristalinas sometidas a gradientes térmicos. Universidad de Oviedo, Servicio de publicaciones (1991).
  • Ruiz de Argandoña, V.G. (1991) Estudio de la microfisuracion térmica mediante emisión acústica: interpretación petrográfica. Universidad de Oviedo, Servicio de publicaciones.
  • Tourenq, C.; Fourmaintraux, D.; Denis, A. (1971) Propagation des ondes et discontinuités des roches. In: Proc. Int. Symp. Int. Soc. Rock Mech.
  • Delgado Rodrigues, J. (1983) Studies of fissuration of rocks. G.P. Newsletter 4. In: Group petrography of the Icomos Stone Committee. 30-33. Strasbourg.
  • Carmichael, R.S. (1989) Practical handbook of physical properties of rocks and minerals. FL: CRC Press, Boca Raton, Florida. (1989).
  • Le Maitre, R.W. (Ed.) (2002) Igneous rock. A classification and glossary of terms. Recommendations of the I.U.G.S. Cambridge University Press. (2002). https://doi.org/10.1017/CBO9780511535581