Efecto del grupo-clase sobre la cibervictimización en estudiantes de secundariaun análisis multinivel

  1. David Álvarez-García 1
  2. Andrea Núñez 2
  3. María del Carmen Pérez-Fuentes 2
  4. Guillermo Vallejo 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  2. 2 Universidad de Almería
    info

    Universidad de Almería

    Almería, España

    ROR https://ror.org/003d3xx08

Revista:
Revista de educación

ISSN: 0034-8082

Año de publicación: 2022

Título del ejemplar: Acoso escolar y riesgos de Internet : diagnóstico, prevención e intervención

Número: 397

Páginas: 153-178

Tipo: Artículo

DOI: 10.4438/1988-592X-RE-2022-397-543 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de educación

Resumen

Introduction. Cyberbullying is a complex phenomenon that has significant consequences for victims. Understanding it requires a systemic-ecological approach, aiming to identify both individual and contextual predictors. During adolescence, peer group influence becomes particularly important, especially the influence of classmates, who spend much of their time together. The main objective of this study was to analyze the possible effect of classgroup characteristics on the probability of being the victim of cyberbullying, controlling for the effects of personal variables, in a sample of adolescents in Asturias (Spain). To do that, it was first determined whether there was variability in cyber-victimization between class-groups, along with the effects of personal variables in the sample examined. Method. Self-report scales were administered to 1923 secondary school students (aged 12-18). Multilevel regression analysis was performed. Results. There were differences in cyber-victimization between classes, with 5% of the variance explained by class-group variables. A positive relationship was found between cyber-victimization and the following student variables: age; social anxiety; engaging in high-risk behaviors on the internet; being the victim of traditional violence at school; and being a cyber-aggressor. The class-group variables which exhibited a positive relationship with cybervictimization were the average level of cyber-aggression and the average level of traditional victimization in the group, even when controlling for the effects of personal variables. Discussion. It is important to develop students’ social skills, including working on peer group dynamics, promoting support and friendship networks, offering guidance on safe, responsible use of the internet, and working on empathy and pro-victim responses to bullying that is seen or known about. The importance of these variables as indicators for early detection of the problem is highlighted.

Referencias bibliográficas

  • Álvarez-García, D., Barreiro-Collazo, A., & Núñez, J.C. (2017). Cyberaggression among adolescents: Prevalence and gender differences. Comunicar, 25(50), 89-97. https://doi.org/10.3916/C50- 2017-08
  • Álvarez-García, D., Barreiro-Collazo, A., Núñez, J.C., & Dobarro, A. (2016). Validity and Reliability of the Cyber-aggression Questionnaire for Adolescents (CYBA). The European Journal of Psychology Applied to Legal Context, 8, 69-77. https://doi.org/10.1016/j.ejpal.2016.02.003
  • Álvarez-García, D., García, T., & Suárez-García, Z. (2018). The Relationship between Parental Control and High-risk Internet Behaviours in Adolescence. Social Sciences, 7, 87. https://doi.org/10.3390/ socsci7060087
  • Álvarez-García, D., Núñez, J.C., Barreiro-Collazo, A., & García, T. (2017). Validation of the Cybervictimization Questionnaire (CYVIC) for adolescents. Computers in Human Behavior, 70, 270–281. https://doi. org/10.1016/j.chb.2017.01.007
  • Álvarez-García, D., Núñez, J.C., Dobarro, A., & Rodríguez, C. (2015). Risk factors associated with cybervictimization in adolescence. International Journal of Clinical and Health Psychology, 15, 226-235. https://doi.org/10.1016/j.ijchp.2015.03.002
  • Álvarez-García, D., Thornberg, R., & Suárez-García, Z. (2021). Validation of a Scale for Assessing Bystander Responses in Bullying. Psicothema, 33(4), 623-630. https://doi.org/10.7334/psicothema2021.140.
  • Andreu, J.M., & Peña, M.E. (2013). Propiedades psicométricas de la escala de conducta antisocial y delictiva en adolescentes. Anales de Psicología, 29, 516–522. https://doi.org/10.6018/analesps.29.2.135951
  • Avilés, J.M. (2017). Los sistemas de apoyo entre iguales (SAI) y su contribución a la convivencia escolar. Innovación Educativa, 27, 5-18. https://doi.org/10.15304/ie.27.4278
  • Beltrán-Catalán, M., Zych, I., Ortega-Ruiz, R., & Llorent, V.J. (2018). Victimisation through Bullying and Cyberbullying: Emotional Intelligence, Severity of Victimisation and Technology Use in Different Types of Victims. Psicothema, 30(2), 183-188. https://doi.org/10.7334/ psicothema2017.313
  • Dang, J., & Liu, L. (2020). When Peer Norms Work? Coherent Groups Facilitate Normative Influences on Cyber Aggression. Aggressive Behavior, 46(6), 559-569. https://doi.org/10.1002/ab.21920
  • Festl, R., Scharkow, M., & Quandt, T. (2015). The Individual or the Group: A Multilevel Analysis of Cyberbullying in School Classes. Human Communication Research, 41(4), 535–556. https://doi.org/10.1111/ hcre.12056
  • Flores, R., Caballer, A., & Romero, M. (2020). Effect of a Cyberbullying Prevention Program Integrated in the Primary Education Curriculum. Revista de Psicodidáctica, 25(1), 23-29. https://doi.org/10.1016/j. psicod.2019.08.001
  • Gámez-Guadix, M., & Gini, G. (2016). Individual and Class Justification of Cyberbullying and Cyberbullying Perpetration: A Longitudinal Analysis among Adolescents. Journal of Applied Developmental Psychology, 44, 81-89. https://doi.org/10.1016/j.appdev.2016.04.001
  • Gámez-Guadix, M., Borrajo, E., & Almendros, C. (2016). Risky Online Behaviors among Adolescents: Longitudinal Relations among Problematic Internet Use, Cyberbullying Perpetration, and Meeting Strangers Online. Journal of Behavioral Addictions, 5(1), 100-107. https://doi.org/10.1556/2006.5.2016.013.
  • Garaigordobil, M. (2017). Psychometric Properties of the Cyberbullying Test, a Screening Instrument to Measure Cybervictimization, Cyberaggression, and Cyberobservation. Journal of Interpersonal Violence, 32(23), 3556-3576. https://doi.org/10.1177/0886260515600165
  • Giletta, M., Choukas-Bradley, S., Maes, M., Linthicum, K., Card, N., & Prinstein, M.J. (2021). A Meta-Analysis of Longitudinal Peer Influence Effects in Childhood and Adolescence. Psychological Bulletin, 147(7), 719-747. https://doi.org/10.1037/bul0000329
  • Guo, S. (2016). A Meta-Analysis of the Predictors of Cyberbullying Perpetration and Victimization. Psychology in the Schools, 53(4), 432- 453.https://doi.org/10.1002/pits.21914
  • Heirman, W., Angelopoulos, S., Wegge, D., Vandebosch, H. Eggermont, S., & Walrave, M. (2015). Cyberbullying-Entrenched or Cyberbully- Free Classrooms? A Class Network and Class Composition Approach. Journal of Computer-Mediated Communication, 20(3), 260–277. https://doi.org/10.1111/jcc4.12111
  • Khoury-Kassabri, M., Benbenishty, R., Avi Astor, R., & Zeira, A. (2004). The Contributions of Community, Family, and School Variables to Student Victimization. American Journal of Community Psychology, 34(3-4), 187-204.
  • Kowalski, R.M., Giumetti, G.W., Schroeder, A.N., & Lattanner, M.R. (2014). Bullying in the Digital Age: A critical Review and Meta-Analysis of Cyberbullying Research among Youth. Psychological Bulletin, 140(4), 1073. https://doi.org/10.1037/a0035618
  • Kowalski, R.M., & Limber, S.P. (2013). Psychological, Physical, and Academic Correlates of Cyberbullying and Traditional Bullying. Journal of Adolescent Health, 53(1 Suppl), S13-20. https://doi.org/10.1016/j. jadohealth.2012.09.018
  • Machimbarrena, J.M., Calvete, E., Fernández-González, L., Álvarez- Bardón, A., Álvarez-Fernández, L., & González-Cabrera, J. (2018). Internet Risks: An Overview of Victimization in Cyberbullying, Cyber Dating Abuse, Sexting, Online Grooming and Problematic Internet Use. International Journal of Environmental Research and Public Health, 15(11), 2471. https://doi.org/10.3390/ijerph15112471
  • Marciano, L., Schulz, P.J., & Camerini, A.L. (2020). Cyberbullying Perpetration and Victimization in Youth: A Meta-analysis of Longitudinal Studies. Journal of Computer-Mediated Communication, 25(2), 163- 181. https://doi.org/10.1093/jcmc/zmz031
  • Menesini, E., & Salmivalli, C. (2017). Bullying in Schools: the State of Knowledge and Effective Interventions. Psychology, Health & Medicine, 22:sup1, 240-253. https://doi.org/10.1080/13548506.2017.1279740
  • Ortega-Barón, J., González-Cabrera, J., Machimbarrena, J.M., & Montiel, I. (2021). Safety.Net: A Pilot Study on a Multi-Risk Internet Prevention Program. International Journal of Environmental Research and Public Health, 18(8), 4249. https://doi.org/10.3390/ijerph18084249
  • Saarento, S., Boulton, A.J., & Salmivalli, C. (2015). Reducing Bullying and Victimization: Student- and Classroom-level Mechanisms of Change. Journal of Abnormal Child Psychology, 43(1), 61–76. https://doi. org/10.1007/s10802-013-9841-x
  • SAS Institute Inc. (2020). SAS/STAT® 14.3 user’s guide. SAS Institute Inc.
  • van Geel, M., Goemans, A., Zwaanswijk, W., Gini, G., & Vedder, P. (2018). Does Peer Victimization Predict Low Self-esteem, or does Low Selfesteem Predict Peer Victimization? Meta-analyses on Longitudinal Studies. Developmental Review, 49, 31-40.
  • Wegge, D., Vandebosch, H., & Eggermont, S. (2014). Who Bullies whom Online: A Social Network Analysis of Cyberbullying in a School Context. Communications, 39(4), 415-433.