El holobionte/hologenoma como nivel de selecciónuna aproximación a la evolución de los consorcios de múltiples especies

  1. Javier Suárez 1
  1. 1 Jagiellonian University
    info

    Jagiellonian University

    Cracovia, Polonia

    ROR https://ror.org/03bqmcz70

Revista:
Theoria: an international journal for theory, history and foundations of science

ISSN: 0495-4548

Año de publicación: 2021

Volumen: 36

Número: 1

Páginas: 81-112

Tipo: Artículo

DOI: 10.1387/THEORIA.21611 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Theoria: an international journal for theory, history and foundations of science

Resumen

El debate de las unidades o niveles de selección concierne la pregunta acerca del tipo de sistemas biológicos que son lo suficientemente estables como para que parte de su evolución sea resultado del proceso de selección natural actuando a su nivel. Tradicionalmente, el debate ha concernido al menos dos preguntas diferentes, aunque relacionadas: la pregunta por el nivel en el cual se da la interacción con el ambiente (qué entidad actúa como interactor), y la pregunta por el nivel en que ocurre la reproducción (qué entidad actúa como replicador o reproductor). En los últimos años, biólogos y filósofos han discutido un nuevo aspecto de este debate, a saber: la posibilidad de que ciertos consorcios de múltiples especies formados por un hospedero y su microbioma (holobiontes/hologenomas) puedan actuar como una unidad de selección. Dicha tesis, no obstante, no ha estado exenta de crítica, ya que es dudoso que tales consorcios puedan reunir las condiciones requeridas para alcanzar el grado de estabilidad suficiente que permitiría que actuasen como unidades de selección. El presente artículo tiene como objetivo examinar sistemáticamente tales críticas y defender la tesis de que el holobionte/hologenoma puede actuar como un nivel de selección genuino tanto en la forma de interactor como en la forma de reproductor. Para ello, se argumentará que el microbioma debe caracterizarse en términos funcionales, en vez de en términos taxonómicos.

Información de financiación

El autor agradece a Giorgio Airoldi, David Alvargonzález, Santiago Ginnobili y Guillermo Ponz por su lectura detallada del trabajo, y sus comentarios. Asimismo, gracias a Adrian Stencel, Mark Canciani, John Dupré y Lisa Lloyd por haber leído una primera versión tra-ducida del trabajo y haber dado comentarios extensos a ciertas partes del mismo. Se agra-dece también la labor de dos revisores anónimos de Theoria, así como de los editores. El tra-bajo ha sido financiado por el Narodowe Centrum Nauki, OPUS Grant No. 2019/35/B/ HS1/01998.

Financiadores

Referencias bibliográficas

  • Ariew A., & Lewontin, R. C. (2004). The confusions of fitness. Br J Philos Sci 55, 347-363.
  • Baedke, J., Fábregas-Tejeda, A., Delgado, A. N. (2020). The hologenome concept before Margulis. JExpZool (MolDevEvol) 334, 149-155.
  • de Bary A. (1879). Die Erscheinung der Symbiose. Verlag von Karl J. Trübner.
  • Bennett G.M., & Moran, N.A. (2015). Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. PNAS USA 112, 10169-10176.
  • Booth, A. (2014). Symbiosis, selection and individuality. Bio Philos 29, 657-673.
  • Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoSBiol 13(8). https://doi.org/10.1371/journal.pbio.1002226.
  • Bosch, T. C. G., & Miller, D. J. (2016). The Holobiont Imperative. Dordrecht: Springer.
  • Bourrat, P. (2019). Evolutionary Transitions in Heritability and Individuality. Theory in Biosciences 138 (2), 305-23.
  • Bourrat, P., & Griffiths, P. (2018). Multispecies individuals. History and Philosophy of the Life Sciences 40(2), 33. https://doi.org/10.1007/s40656-018-0194-1.
  • Brandon, R. (1988). Levels of selection: A hierarchy of interactors. In HC Plotkin (ed.). The Role of Behaviour in Evolution: (pp. 51-71). Cambridge, MA: The MIT Press.
  • Bright, M., & Bulgheresi, S. (2010). A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8, 218-230.
  • Brooks, A. W., Kohl, K. D., et  al. (2016). Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoSBiol 14 (11). https://doi.org/10.1371/journal. pbio.2000225.
  • Brucker, R. & Bordenstein, S. R. (2012). Speciation by Symbiosis. TrendsEcolEvol 27 (8), 443-451.
  • Brucker, R. & Bordenstein, S. R. (2013a.) The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667-669.
  • Brucker, R. & Bordenstein, S. R. (2013b). The capacious hologenome. Zoology 116 (5), 260-261.
  • Buss, L.W. (1987). The Evolution of Individuality. Princeton, NJ: Princeton University Press.
  • Calcott, B. & Sterelny, K. (2011). Major transitions in evolution revisited. Cambridge, MA: The MIT Press.
  • Cerqueda-García, D., & Falcón, L. I. (2016). La construcción del nicho y el concepto de holobionte, hacia la reestructuración de un paradigma. RevMexBiodiv 87, 1. http://dx.doi.org/10.1016/j.rmb.2015.11.001.
  • Chandler, J., & Turelli, M. (2014). Comment on «The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia». Science 345(6200), 1011.
  • Chiu, L., & Eberl, G. (2016). Microorganisms as scaffolds of host individuality: an eco-immunity account of the holobiont. Biol Philos 31(6), 819-837.
  • Chiu, L., & Gilbert, S. F. (2019). Niche construction and the transition to herbivory: phenotype switching and the organization of new nutritional modes. In H. Levine, M. K. Jolly, P. Kulkarni, and V. Nanjundiah (eds.). Phenotypic Switching: Implications in Biology and Medicine: (pp. 459-483). Cambridge, MA: Academic Press.
  • Clarke, E. (2013). The multiple realizability of biological individuals. The Journal of Philosophy CX(8), 413- 435.
  • Clarke, E. (2014). Origins of evolutionary transitions. JBiosci 39(2), 307-317.
  • Clarke, E. (2016). Levels of selection in biofilms: multispecies biofilms are not evolutionary individuals. Biol Philos 31, 191-212.
  • Dawkins, R. (1976). The Selfish Gene. New York: Oxford University Press [ed. cast. El gen egoísta. Barcelona: Salvat 2000].
  • Damuth, J., & Heisler, I. L. (1988). Alternative formulations of multilevel selection. Biol Philos 3, 407-430.
  • Díaz, J.S. (2015). El mecanismo evolutivo de Margulis y los niveles de selección. Contrastes. Revista internacional de filosofía XX(1), 7-26.
  • Diéguez, A. (2012). La vida bajo escrutinio. Madrid: Biblioteca Buridán.
  • Doolittle, W.F., & Booth, A. (2017). It’s the song not the singer: an exploration of holobiosis and evolutionary theory. Biol Philos 32(1), 5-24.
  • Douglas, A.E. (2010). The symbiotic habit. Princeton, NJ: Princeton University Press.
  • Douglas, A.E., & Werren, J.H. (2016). Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7(2). https://doi.org/10.1128/mBio.02099-15.
  • Drown D.M., & Wade, M.J. (2014). Runaway coevolution: adaptation to heritable and nonheritable environments. Evolution 68(10), 3039-3046.
  • Drown D.M., Zee, P.C., et al. (2013). Evolution of transmission mode in obligate symbionts. EvolEcolRes 15, 43-59.
  • Dupré, J. (2012). Processes of life: Essays in the Philosophy of Biology. Oxford: Oxford University Press.
  • Dupré, J., & O’Malley, M.A. (2009). Varieties of living things: Life at the intersection of lineage and metabolism. Philosophy & Theory in Biology 1: e003. http://dx.doi.org/10.3998/ptb.6959004.0001.003
  • Frank, S.A. (2011). Natural selection. II. Developmental variability and evolutionary rate. Journal of Evolutionary Biology 24, 2310-2320.
  • Gilbert, S.F. (2014). A holobiont birth narrative: The epigenetic transmission of the human microbiome. Frontiers in Genetics 5, 282. https://doi.org/10.3389/fgene.2014.00282
  • Gilbert, S.F. (2019). Developmental symbiosis facilitates the multiple origins of herbivory. Evolution & Development 22, 154-164.
  • Gilbert, S.F., & Chiu, L. (2015). The birth of the holobiont. Multispecies birthing through mutual scaffolding and niche construction. Biosemiotics 8, 191-210.
  • Gilbert, S.F., & Tauber, A.I. (2016). Rethinking Individuality: The Dialectics of the Holobiont. Biol Philos 31(6), 839-853.
  • Gilbert, S.F., Sapp, J., & Tauber, A.I. (2012). A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology 87(4), 325-341.
  • Gilbert, S.F., Rosenberg, E. & Zilber-Rosenberg, I. (2017). The holobiont with its hologenome is a level of selection in evolution. In S. B. Gissis, E. Lamm, and A. Shavit (eds.). Landscapes of collectivity in the life sciences: (pp. 305-324). London: The MIT Press.
  • Gildenhuys, P. (2019). Natural selection. In E.N. Zalta (ed.) The Stanford Encyclopaedia of Philosophy. https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=natural-selection.
  • Ginnobili, S. (2010). La teoría de la selección natural darwiniana. Theoria 25(1), 37-58.
  • Ginnobili, S. (2018). La teoría de la selección natural – Una exploración metacientífica. Bernal: Universidad Nacional de Quilmes.
  • Godfrey-Smith, P. (2009). Darwinian populations and natural selection. Oxford: Oxford University Press.
  • Godfrey-Smith, P. (2013). Darwinian Individuals. In F Bouchard & P Huneman (eds.): From group to individuals: evolution and emerging individuality. Cambridge, MA: The MIT Press.
  • Godfrey-Smith, P. (2015). Reproduction, symbiosis, and the eukaryotic cell. PNAS 112(33), 10120-10125.
  • Goodnight, C.J. (2005). Multilevel selection: the evolution of cooperation in non-kin groups. Popul Ecol 47, 3-12.
  • Goodnight, C.J. (2015). Multilevel selection theory and evidence: a critique of Gardner. Journal of Evolutionary Biology 28, 1734-1746.
  • Greslehner, G. (En prensa). Can the immune system recognize biological functions? Studies in the History and Philosophy of the Life Sciences Part C.
  • Griesemer, J. (2000). The units of evolutionary transition. Selection 1(3), 67-80.
  • Griffiths, P.E., & Gray, R.D. (1994). Developmental systems and evolutionary explanation. The Journal of Philosophy 91(6), 277-304.
  • Griffiths, P.E., & Gray, R.D. (1997). Replicator II–judgement day. Biol Philos 12(4), 471-492.
  • Griffiths, P.E., & Hochman, A. (2015). Developmental systems theory. In H. Kehrer-Sawatzi (ed.). eLS (pp. 1-7). Chichester, UK: John Wiley & Sons.
  • Guerrero, R., Margulis, L. & Berlanga, M. (2013). Symbiogenesis: The holobiont as a unit of evolution. International Microbiology 16(3), 133-143.
  • Henry, L.P., & Ayroles, J.F. (2020). The microbiome responds to Evolve and Resequence experiments in Drosophila melanogaster. bioRxiv. https://doi.org/10.1101/2020.03.19.999078
  • Hull, D.L. (1980). Individuality and Selection. Annual Review of Ecology and Systematics 11, 311-332.
  • Hull, D.L. (1988). Science as a process. Chicago: University of Chicago Press. Hurst, G.D.D. (2017). Extended genomes: symbiosis and evolution. Interface Focus 7 (5). https://doi. org/10.1098/rsfs.2017.0001
  • Kramer, J., & Meunier, J. (2016). Kin and multilevel selection in social evolution: a never ending controversy? F1000Research 5, 776. https://doi.org/10.12688/f1000research.8018.1
  • Lavagnino, N.J., Massarini, A. & Folguera, G. (2014). Simbiosis y evolución: Un análisis de las implicaciones evolutivas de la obra de Lynn Margulis. Revista Colombiana de Filosofía de la Ciencia 14 (29), 161-181.
  • Le anceau, P., Blouin, M., et al. (2017). Let the core microbiota be functional. TRENDS in Plant Science 22(7), 583-595. Lewontin, R.C. (1970). The units of selection. AnnuRevEcolEvolSyst 1, 1-18.
  • Lewontin, R.C. (1985). Adaptation. In R. Levins & R.C. Lewontin (eds.): The Dialectical Biologist: (pp. 65- 84). Cambridge, MA: Harvard University Press.
  • Lloyd, E. (1994). The Structure and Confirmation of Evolutionary Theory. Princeton, NJ: Princeton University Press.
  • Lloyd, E. (2015). Adaptationism and the Logic of Research Questions: How to Think Clearly About Evolutionary Causes. BiolTheor 10, 343-362.
  • Lloyd, E. (2017a). Units and Levels of selection. In E. N. Zalta (ed.) Stanford Encyclopaedia of Philosophy. https://plato.stanford.edu/entries/selection-units/
  • Lloyd, E. (2017b). Holobionts as units of selection: Holobionts as interactors, reproducers, and manifestors of adaptation. In S. B. Gissis, E. Lamm, & A. Shavit (Eds.). Landscapes of Collectivity in the Life Sciences (pp. 351-368). Cambridge, MA: The MIT Press.
  • Lloyd, E. (En prensa). Adaptation. Cambridge: Cambridge University Press. Lloyd, E., & M.J. Wade. (2019) Criteria for holobionts from community genetics. Biol Theor. 14, 151-170.
  • Louca, S., Jacques, S.M.S., et al. (2016). High taxonomic variability despite stable functional structure across microbial communities. NatEcolEvol 1, 15. https://doi.org/10.1038/s41559-016-0015.
  • Luque, V. (2017). One equation to rule them all: A philosophical analysis of the Price equation. Biol Philos 32, 97-125.
  • Luque, V. (2018). George Price y el lenguaje de la evolución. eVOLUCIÓN 13(1), 33-42.
  • Lynch, J.B., & Hsiao, E.Y. (2019). Microbiomes as sources of emergent host phenotypes. Science 365(6460), 1405-1409.
  • Marchesi, J.R., & Ravel, J. (2015). The vocabulary of microbiome research: A proposal. Microbiome 3(31). https://doi.org/10.1186/s40168-015-0094-5.
  • Margulis, L. (1990). Words as battle cries: Symbiogenesis and the new field of endocytobiology. Bioscience 40(9), 673-677.
  • Margulis, L. (1991). Symbiogenesis and symbioticism. In L. Margulis, and R. Fester (eds.). Symbiosis as a source of evolutionary innovation: (pp. 1-14). London. The MIT Press.
  • Maynard-Smith, J. (1988). Evolutionary progress and levels of selection. In Nitecki M.H. (eds). Evolutionary Progress: (pp. 219-230). Chicago: University of Chicago Press.
  • Maynard-Smith, J. (1991). A Darwinian view of symbiosis. In Margulis, L., and Fester, R. (eds.). Symbiosis as a source of evolutionary innovation (pp. 26-39). Cambridge, MA: The MIT Press.
  • Maynard-Smith, J., & Szathmary, E. (1995). The Major Transitions in Evolution. Oxford: Oxford University Press.
  • McFall-Ngai, M. (2015). Giving microbes their due – animal life in a microbially dominant world. J Exp Biol 218, 1968-1973.
  • McFall-Ngai, M., M.G. Hadfield, et al. (2013). Animals in the bacterial world, a new imperative for the life sciences. PNAS USA 110(9), 3229-3236.
  • Mendoza, M.L.Z., Z. Xiong, M. Escalera-Zamudio, et al. (2018). Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nature Ecol Evol 2, 659-668.
  • Moran, N.A. (2006). Symbiosis. Current Biology 16(20), R866-R871. https://doi.org/10.1016/j.cub.2006.09.019.
  • Moran, N.A., & Sloan, D.B. (2015). The Hologenome Concept: Helpful or Hollow? PLoSBiol 13(12). https://doi.org/10.1371/journal.pbio.1002311.
  • Moreno, A., & Mossio, M. (2015). Biological Autonomy. A Philosophical and Theoretical Enquiry. Berlin: Springer.
  • Okasha, S. (2006). Evolution and the levels of selection. Oxford: Oxford University Press.
  • Okasha, S. (2014). The relation between kin and multilevel selection theory: An approach using causal graphs. BrJPhilScien 67(2), 435-470.
  • van Opstal, E.J., & Bordenstein, S.R. (2015). Rethinking heritability of the microbiome. Science 349, 1172- 1173.
  • Osmanovic D., D.A. Kessler, Y. Rabin, & Y. Soen. (2018). Darwinian selection of host and bacteria supports emergence of Lamarckian-like adaptation of the system as a whole. BiolDirect 13(1), 24. https://doi. org/10.1186/s13062-018-0224-7.
  • Pradeu, T. (2010). What is an organism? An immunological answer. History and Philosophy of the Life Sciences 32(3), 247-267.
  • Pradeu, T. (2016). Organisms or biological individuals? Combining physiological and evolutionary individuality. Biol Philos 31, 797-817.
  • Pradeu, T. (2020). Philosophy of immunology. Cambridge: Cambridge University Press.
  • Price, G.R. (1970). Selection and covariance. Nature 227, 520-521.
  • Price, G.R. (1972). Extension of covariance selection mathematics. AnnHumGenet 35, 485-490.
  • Queller, D.C. (2000). Relatedness and the Fraternal Major Transitions. Philosophical Transactions: Biological Sciences 355(1403), 1647-1655.
  • Queller, D.C., & Strassmann, J.E. (2016). Problems of multispecies organisms: endosymbionts to holobionts. Biol Philos 31, 855-873.
  • Rohwer, F., Seguritan, V., et al. (2002). Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243, 1-10.
  • Rosenberg, E., & Zilber-Rosenberg, I. (2013). The Hologenome Concept. London: Springer.
  • Rosenberg, E., & Zilber-Rosenberg, I. (2018). The hologenome concept of evolution after 10 years. Microbiome 6(1), 78. https://doi.org/10.1186/s40168-018-0457-9.
  • Roughgarden, J., Gilbert, S.F., et al. (2018). Holobionts as units of selection and a model of their population dynamics and evolution. BiolTheor 13(1), 44-65.
  • Roughgarden, J. (2020). Holobiont Evolution: Mathematical Model with Vertical vs. Horizontal Microbiome Transmission. Philosophy, Theory and Practice in Biology 12, 2.
  • Rudman, S. M., Greenblum, S., et al. (2019). Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. PNAS USA 116, 20025-20032.
  • Skillings, D. (2016). Holobionts and the ecology of organisms: Multi-species communities or integrated individuals? Biol Philos 31, 875-892.
  • Sober, E. (1993). Philosophy of biology. New York: Westview Press [ed. cast. Filosofía de la biología. Madrid: Alianza. 1996.]
  • Sober, E., & Wilson, D.S. (1998). Unto Others: The Evolution and Psychology of Unselfish Behavior. Cambridge MA: Harvard University Press.
  • Stencel, A. (2016). The relativity of Darwinian populations and the ecology of endosymbiosis. Biol Philos 31(5), 619-637.
  • Stencel, A., & Proszewska, A. (2017). How research on microbiomes is changing biology: A discussion of the concept of the organism. Foundations of Science 23(4), 603-620.
  • Stencel, A., & Wloch-Salamon, D.M. (2018). Some theoretical insights into the hologenome theory of evolution and the role of microbes in speciation. Theory Biosci. 137(2), 197-206.
  • Sterner, B. (2015). Pathways to Pluralism about Biological Individuality. Biol Philos 30 (5), 609-628.
  • Suárez, J. (2016). Bacterial species pluralism in the light of medicine and endosymbiosis. Theoria 31(1), 91-105.
  • Suárez, J. (2018). The importance of symbiosis in philosophy of biology: An analysis of the current debate on biological individuality and its historical roots. Symbiosis 76(2), 77-96.
  • Suárez, J. (2020). The stability of traits conception of the hologenome: An evolutionary account of holobiont individuality. History and Philosophy of the Life Sciences 42,11. https://doi.org/10.1007/s40656- 020-00305-2.
  • Suárez, J., & Stencel, A. (2020). A part-dependent account of biological individuality: Why holobionts are individuals and ecosystems simultaneously? Biological Reviews. Online first. https://doi.org/10.1111/ brv.12610.
  • Suárez, J., & Triviño, V. (2019). A metaphysical approach to holobiont individuality: Holobionts as emergent individuals. Quaderns de Filosofia 6(1), 59-76.
  • Suárez, J., & Triviño, V. (2020). What is a hologenomic adaptation? Emergent individuality and inter-identity in multispecies systems. Frontiers in Psychology 11, 187. doi: https://doi.org/10.3389/ fpsyg.2020.00187.
  • Taxis T.M., Wolff, S., et al. (2015). The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Research 43(20), 9600-9612.
  • Theis K.R., Dheilly, N.M., et al. (2016). Getting the hologenome concept right: an ecoevolutionary framework for hosts and their microbiomes. mSystems 1(2). https://doi.org/10.1128/mSystems.00028-16.
  • Veigl, S., Suárez, J. & Stencel, A. (2019). Does inheritance need a rethink? Conceptual tools to extend inheritance beyond DNA. Extended Evolutionary Synthesis. https://extendedevolutionarysynthesis.com/ inheritance-rethink/.
  • van Vilet, S., & Doebeli, M. (2019). The role of multilevel selection in host microbiome evolution. PNAS USA 116(41), 20591-20597.
  • Vrba, E. & Gould, S. J. 1986. The hierarchical expansion of sorting and selection: Sorting and selection cannot be equated. Paleobiology 12 (2), 217-228.
  • Wade, M. J. (2016). Adaptation in Metapopulations: How Interaction Changes Evolution. Chicago, IL: University of Chicago Press.
  • Werren, J.H., Baldo, L., Clark, M.E. (2008). Wolbachia: master manipulator of invertebrate biology. Nature Reviews Microbiology 6, 741-51.
  • Zilber-Rosenberg, I. and Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Ecol 32 (5), 723-735.