Equilibrium Explanation as Structural Non- Mechanistic ExplanationsThe Case of Long-Term Bacterial Persistence in Human Hosts

  1. Javier Suárez
  2. Roger Deulofeu
Revista:
Teorema: Revista internacional de filosofía

ISSN: 0210-1602

Año de publicación: 2019

Volumen: 38

Número: 3

Páginas: 95-120

Tipo: Artículo

Otras publicaciones en: Teorema: Revista internacional de filosofía

Resumen

Philippe Huneman ha cuestionado recientemente los límites en la aplicación de los modelos mecanicistas de la explicación científica en base a la existencia de lo que denomina “explicaciones estructurales”, en las que el fenómeno se explica en virtud de las propiedades matemáticas del sistema en que el fenómeno ocurre. Las explicaciones estructurales pueden darse en formas muy diversas: en virtud de la forma de pajarita (bowtie) de la estructura, de las propiedades topológicas del sistema, de los equilibrios alcanzados, etc. El papel que juegan las matemáticas en las explicaciones que apelan a la estructura de pajarita o a las propiedades topológicas del sistema ha sido recientemente examinado en varios trabajos. Sin embargo, el papel exacto que juegan las matemáticas en el caso de las explicaciones en términos de equilibrio aún no ha sido totalmente clarificado, y diferentes autores defienden interpretaciones contradictorias, algunas de las cuales las asemejarían más al modelo defendido por algunos filósofos mecanicistas que al modelo estructural de Huneman. En este trabajo, tratamos de cubrir ese déficit estudiando el papel que juegan las matemáticas en el modelo de equilibrio anidado (nested equilibrium) elaborado por Blaser y Kirchner para explicar la estabilidad de las asociaciones ontogenética y filogenéticamente persistentes entre humanos y microorganismos. De nuestro análisis se desprende que su modelo es explicativo porque i) se identifica una estructura matemática del sistema que viene dada por un conjunto de ecuaciones diferenciales que satisfacen una estrategia evolutivamente estable; ii) la estructura anidada del modelo hace que la estrategia evolutivamente estable sea robusta ante posibles perturbaciones; iii) esto es así porque las propiedades del sistema empírico son isomorfas a, pero no causalmente responsables de, las propiedades de la estrategia evolutivamente estable. La combinación de estas tres tesis hace que las explicaciones en términos de equilibrios se asemejen más al modelo estructural de explicación que al modelo mecanístico.

Referencias bibliográficas

  • BATTERMAN, R.W., and C. C. RICE (2014), “Minimal Model Explanations”; Philosophy of Science 81. 3, pp. 349-376.
  • BECHTEL, W., and A. ABRAHAMSEN (2005), “Explanation: A Mechanist Alternative”; Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2), pp. 421–441.
  • BLASER, M. J. (2006), “Who Are We? Indigenous Microbes and the Ecology of Human Diseases”; EMBO Rep 7, pp. 956–960.
  • BLASER, M. J. and J. ATHERTON (2004), “Helicobacter pylori Persistence: Biology and Disease”; J. Clin. Invest. 113, pp. 321–333.
  • BLASER M. J., and D. KIRSCHNER (1999), “Dynamics of Helicobacter pylori Colonization in Relation to the Host Response”; Proc Nat Acad Sci 96, pp8359-8364.
  • BLASER M. J., and D. KIRSCHNER (2007), “The Equilibria that Allow Bacterial Persistence in Human Hosts”; Nature 449, pp. 843–849.
  • BRIGANDT, J. (2013), “Systems Biology and the Integration of Mechanistic Explanation and Mathematical Explanation”; Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44, pp. 477–492.
  • BRIGANDT, J., S. GREEN, and M. A. O’MALLEY (2017),” Systems Biology and Mechanistic Explanation”; in S. Glennan and P. Illari (eds.) The Routledge Handbook of Mechanisms and Mechanical Philosophy, London: Routledge (chapter 27).
  • CHIU, L., and S. F. GILBERT (2015), “The Birth of the Holobiont: Multi-species Birthing Through Mutual Scaffolding and Niche Construction”; Biosemiotics 8 (2), pp. 191–210.
  • CRAVER, C. F. (2007), Explaining the Brain; New York: Clarendon Press.
  • CRAVER, C. F. (2014), “The Ontic Account of Scientific Explanation”; in Kaiser, M. I., Scholz, Plenge, R. D. Hüttemann, A. (eds.), Explanation in the Special Sciences: The Case of Biology and History, Springer Verlag. pp. 27–52.
  • CRAVER, C. F., and W. BECHTEL (2007.), “Top-Down Causation Without TopDown Causes”; Biology & Philosophy 22(4), pp. 547-563.
  • CRAVER, C. F., and L. DARDEN (2013), In search for Mechanisms: Discovery Across the Life sciences; Chicago: University of Chicago Press.
  • DEULOFEU, R. and J. SUÁREZ (2018), “When Mechanisms Are Not Enough: The Origin of Eukaryotes and Scientific Explanation”; in Christian A., Hommen D., Retzlaff N., Schurz G. (eds) Philosophy of Science. European Studies in Philosophy of Science, vol 9. Springer, Cham.
  • DEULOFEU, R, J. SUÁREZ and A. PÉREZ-CERVERA (2019), “Explaining the Behaviour of Random Ecological Networks: The Stability of the Microbiome as a Case of Integrative Pluralism”; Synthese. https://doi.org/10.1007/ s11229-019-02187-9.
  • DÍAZ, J. S. (2015), “El Mecanismo Evolutivo de Margulis y los Niveles de Selección”; Contrastes XX (1), pp. 7-26.
  • DOUGLAS A. E. and J. H. WERREN (2016), “Holes in the Hologenome: Why Host-Microbe Symbioses Are Not Holobionts”; mBio 7 (2), e02099-15.
  • EASLEY, D. and KLEINBERG, J. (2010), Networks, Crowds, and Markets: Reasoning about a Highly Connected World; Cambridge University Press.
  • EBERL, G. (2016), “Immunity by Equilibrium”; Nat. Rev. Immunol. 16, pp. 524-532.
  • GINTIS, H. (2000), Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Behavior.; Princeton University Press.
  • GLENNAN, S. (2002), Rethinking Mechanistic Explanation; Philosophy of Science 69 (S3), pp. S342–S353.
  • GLENNAN, S. and ILLARI, P. (Eds.) (2017), The Routledge Handbook of Mechanisms and Mechanical Philosophy, Taylor and Francis.
  • GREEN, S. (2016), Philosophy of System Biology; Dordrecht: Springer.
  • GREEN, S. (2017), “Philosophy of Systems and Synthetic Biology”; The Stanford Encyclopedia of Philosophy (Edition Spring 2019), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/spr2019/entries/systems-synthetic-biology/>.
  • GREEN, S. and JONES, N. (2016), “Constraint-Based Reasoning for Search and Explanation Strategies for Understanding Variation and Patterns in biology”; Dialectica (70)3, pp. 343-374.
  • HUNEMAN, P. (2010), “Topological Explanations and Robustness in Biological Sciences”; Synthese 177, pp. 213–245.
  • HUNEMAN, P. (2018a), “Outlines of a Theory of Structural Explanation”; Philosophical Studies 175 (3), pp. 665–702.
  • HUNEMAN, P. (2018b), “Diversifying the Picture of Explanations in Biological Sciences: Ways of Combining Topology with Mechanisms”; Synthese 195, pp. 115–146.
  • HUNEMAN, P. (2018c); “Realizability and the Varieties of Explanation”; Studies in History and Philosophy of Science. <https://doi.org/10.1016/j.shpsa.2018.01.004>
  • HUTTENHOWER C, GEVERS D, KNIGHT R, CREAS HH, et al. (2012) “Structure, Function and Diversity of the Healthy Human Microbiome”; Nature 486, pp. 207–214.
  • ISSAD, T., and C. MALATERRE (2015.), “Are Dynamic Mechanistic Explanations Still Mechanistic?”; in P. A. Braillard and C. Malaterre (eds.) Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Dordrecht: Springer, pp. 265–292.
  • JONES, N. (2014), “Bowtie Structures, Pathway Diagrams, and Topological Explanations”; Erkenntnis 79 (5), pp. 1135–1155.
  • KAPLAN, D. M. and C. F. CRAVER (2011), “The Explanatory Force of Dynamical and Mathematical Models in Neuroscience. A Mechanistic Perspective”; Philosophy of Science 78.4, pp. 601-627.
  • KITANO, H., and K. ODA (2006), “Robustness Trade-Offs and Host-Microbial Symbiosis in the Immune System”; Molecular Systems Biology 2, pp. 1–10.
  • KOSTIĆ, D. (2018), “The Topological Realization”; Synthese, 195(1), pp. 79-98.
  • KOSTIĆ, D. (2019), “Minimal Structure Explanations, Scientific Understanding and Explanatory Depth”, Perspectives on Science, 27 (1), pp. 48-67.
  • KRICKEL, B. (2018), The Mechanical World: The Metaphysical Commitments of the New Mechanistic Approach; (Vol. 13). Springer.
  • KUORIKOSKI, J. (2007), “Explaining with Equilibria”; in Persson, J., and Ylikoski, P. (Eds.), Rethinking explanation; Springer, Dordrecht, pp. 149-162.
  • LOZUPONE, C. J. I. STOMBAUGH, J. I. GORDON, J. K. JANSSON, and R. KNIGHT (2012), “Diversity, Stability and Resilience of The Human Gut Microbiota”; Nature 489 (7415), pp. 220–230.
  • MACHAMER, P., DARDEN, L., and C.F. CRAVER (2000), “Thinking About Mechanisms”; Philosophy of science, 67(1), pp. 1-25.
  • MARCHESI, J. R., and J. RAVEL. (2015), “The Vocabulary of the Microbiome Research: A Proposal”; Microbiome 3, p. 31.
  • MORAN, N., and D. B. SLOAN (2015), “The Hologenome Concept: Helpful or Hollow?”; PLoSBiol 13 (12), e1002311.
  • MORENO A., and J. SUÁREZ (submitted), “Plurality of Explanatory Strategies in Biology: Mechanisms and Networks”.
  • NASH, J. F. (1950a), “The Bargaining Problem”; Econometrica: Journal of the Econometric Society 18 (2), pp. 155-162.
  • NASH, J. F. (1950b), “Equilibrium Points in N-Person Games”; Proceedings of the National Academy of Sciences 36 (1), pp. 48-49.
  • NICHOLSON, D.J. (2012), “The Concept of Mechanism in Biology”; Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1), pp. 152–163.
  • POTOCHNIK, A. (2015) “Causal Patterns and Adequate Explanations”; Philosophical Studies, 172(5), pp. 1163-1182.
  • PRADEU, T., JAEGER, S., and E. VIVIER (2013), “The Speed of Change: Towards a Discontinuity Theory of Immunity?”; Nature Reviews Immunology, 13(10), p. 764.
  • PRADEU, T., and E. VIVIER (2016), “The Discontinuity Theory of Immunity”; Sci. Immunol. 1 (1): aag0479.
  • RICE, C. (2015), “Moving Beyond Causes: Optimality Models and Scientific Explanation”; Noûs 49.3 pp. 589-615.
  • ROSENBERG E and I ZILBER-ROSENBERG (2014), The Hologenome Concept. London, Springer.
  • ROSENBERG E and I ZILBER-ROSENBERG (2016) “Microbes Drive Evolution of Animals and Plants: The Hologenome Concept”; mBio 7 (2): e01395-15.
  • SALMON W. (1984), Scientific Explanation and the Causal Structure of The World; Princeton: Princeton University Press.
  • SELOSSE, M. A., RICHARD, F., HE, X., and S.W. SIMARD (2006), “Mycorrhizal Networks: des Liaisons Dangereuses?”; Trends in Ecology and Evolution 21 (11), pp. 621-628.
  • SMITH, J. M. (1974), “The Theory of Games and the Evolution of Animal Conflicts”; Journal of Theoretical Biology, 47(1), pp. 209-221.
  • SMITH, J. M., and G. R. PRICE (1973), “The Logic of Animal Conflict”; Nature, 246(5427), p. 15.
  • SOBER, E. (1983), “Equilibrium Explanation”; Philosophical Studies 43.2, pp. 201-210.
  • SUÁREZ, J. (2018). “The Importance of Symbiosis in Philosophy of Biology: An Analysis of the Current Debate on Biological Individuality and its Historical Roots”; Symbiosis 76(2) pp. 77-96.
  • SUÁREZ, J. and V. TRIVIÑO (2019), “A Metaphysical Approach to Holobiont individuality: Holobionts as Emergent Individuals”; Quaderns de Filosofia 6(1), pp. 59-76.
  • VAN BAALEN, M. and V.A. JANSEN (2001), “Dangerous Liaisons: The Ecology of Private Interest and Common Good”: Oikos, 95(2), 211-224.
  • WOODWARD, J. (2003), Making Things Happen: A Theory of Causal Explanation; New York: Oxford University Press.
  • WOODWARD, J. (2013), “Mechanistic Explanation: Its Scope and Limits”; Aristotelian Society Supplementary Volume 87 (1), pp. 39–65.