Plastic and paper platforms for nanoparticle based immunosensors

  1. Parolo, Claudio
Dirigida por:
  1. Arben Merkoçi Director/a
  2. Antonio Villaverde Corrales Director/a
  3. Alfredo de la Escosura Muñiz Director

Universidad de defensa: Universitat Autònoma de Barcelona

Fecha de defensa: 26 de julio de 2013

Tribunal:
  1. José María de Teresa Nogueras Presidente/a
  2. Anna Laromaine Sagué Secretario/a
  3. Francesco Ricci Vocal

Tipo: Tesis

Teseo: 347384 DIALNET lock_openTDX editor

Resumen

La tesis titulada “Plastic and paper platforms for nanoparticle based immunosensors” presentada como compendio de publicaciones, muestra avances significativos en el campo de los biosensores ópticos y electroquímicos. En la introducción (Capítulo 1) se presenta la importancia que tienen tanto los sensores inmunológicos basados en nanopartículas como los biosensores basados en plataformas de papel y nanomateriales para aplicaciones en diagnóstico. Ambas plataformas destacan por la versatilidad y facilidad de uso, bajo coste y tamaño reducido, lo que hace que sean unos dispositivos excelentes para aplicaciones en países en vías de desarrollo así como para el diagnóstico en casa por el propio paciente o en el consultorio médico. En el Capítulo 2 los objetivos de la tesis están presentados. En la primera parte del Capítulo 3, se explica cómo el tamaño de las nanopartículas de oro afecta a sus propiedades electroquímicas y, por consiguiente, a su detección. Se ha demostrado que para nanopartículas inferiores a 20 nm de diámetro, los efectos Brownianos disminuyen la velocidad de deposición de las nanopartículas en solución, lo que debe ser tenido muy en cuenta para aplicaciones en las que las nanopartículas de oro actúen como marcadores en biosensores. En la segunda parte, se trata sobre el desarrollo de un novedoso método de funcionalización de nanopartículas de oro con anticuerpos. Este método está basado en la interacción entre las cargas positivas que tienen los anticuerpos a pH inferior al de su punto isoeléctrico y las cargas negativas de la superficie de las nanopartículas de oro. Con este método es posible controlar la orientación de los anticuerpos y esto implica poder detectar una menor cantidad de analito (en este caso se uso la inmunoglobulina humana G como proteína modelo). Comparando este método con otro en donde no se controla la orientación, se ha obtenido un límite de detección un orden de magnitud mejor y se ha podido detectar la proteína modelo en una muestra real. En cuanto a la aportación en el campo de los biosensores ópticos, se ha desarrollado un sensor inmunológico basado en inmunoensayos de flujo lateral (LFIA) en papel, aplicado para la detección de inmunoglobulina G humana como se recoge en el Capítulo 4. Esta tecnología destaca por su aplicabilidad y bajo coste (similares a los populares test de embarazo). En esta tesis se han desarrollado dos modificaciones de la tecnología que, sin implicar pérdida en su simplicidad de uso y bajo coste, han aumentado los límites de detección en un orden de magnitud. Una de las modificaciones consiste en unos cambios de la geometría de las tiras que permiten la pre-concentración del complejo analito-marcador en la zona de detección. Esto implica que se puede detectar menor concentración de analito. La otra estrategia consiste en el desarrollo de un doble marcador, donde las nanopartículas de oro están acopladas a un enzima. De esta manera en el LFIA se puede obtener como señal el color rojo de las nanopartículas de oro, como se usa comúnmente, o es posible añadir el substrato del enzima para que catalice una reacción que genere un producto coloreado, que se suma al color rojo de las nanopartículas de oro, aumentando la intensidad del color y mejorando los límites de detección de analito. Ambas modificaciones permiten el uso de este tipo de sensores en una mayor variedad de campos, donde un límite de detección más bajo es necesario. Finalmente, en el Capítulo 5, se presenta también la integración de un transductor electroquímico en soporte de papel. Esta novedosa plataforma, presentada en la tesis como instrumento para la detección de nanopartículas, permite una fácil integración en sistemas ópticos como los LFIAs añadiendo la posibilidad de una cuantificación más precisa.