Development of new high performance titanium alloys with fe-addition for dental implants

  1. Mohan, Prakash
Dirigida por:
  1. Vicente Amigó Borrás Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 11 de junio de 2020

Tribunal:
  1. José Manuel Torralba Castelló Presidente/a
  2. David Busquets Mataix Secretario/a
  3. F. Javier Belzunce Varela Vocal

Tipo: Tesis

Resumen

Ti and its alloys are mostly used biomaterials due to its unique properties like (high corrosion resistance, low elastic modulus, high mechanical strength/ density and good biocompatibility). Ti ß alloys based on the Ti-Mo alloy system shows unique properties to employ as biomaterials. Tiß alloys have lower Young Modulus, shielding stress and lower bone reabsorption. This research aims to develop a new biomaterial for a dental implant. This research evaluates the addition of Zr and a small amount of Fe on the ß-phase stability and the mechanical properties of Ti-Mo alloy to be employed for the medical applications. These alloys had been produced using two powder metallurgy (PM) techniques; first technique is elemental blending (EB) which had been selected because it enhanced the surface contact between the alloying element and Titanium (Ti) with a cost-effective route. The behavior of different Ti alloys composition was evaluated using this technique. Samples were uniaxial pressed at 600 MPa and sintered at 1250ºC. Second technique evaluated in this study was Mechanical alloying (MA). This technique has higher mixing energy than elemental blend which improves mechanical contact between different particles, and it helps diffusion during the sintering process. Samples were pressed at 600 MPa initially, and after evaluating mechanical properties, compaction pressure is changed to 900 MPa for a high green density of powders. Different mechanical tests and microstructural studies were performed for elemental blend (EB) samples and for mechanical alloying samples to ensure the properties suitable for biomedical applications. Different tests for MA are Fluidity test (suitable to know about the flow of the powder after milling cycle) and Granulometric Analysis (test is suitable for powder distribution analysis). Other tests are common like Archimedes test which is suitable for calculating the porosity of the sintered samples, Three-point bending test is suitable for knowing Bending strength of the sintered samples and to know energy conserved by the breaking samples, Ultrasonic test performed for knowing elastic modulus of the alloys, Hardness test performed for calculating the Vicker¿s hardness of the alloy, SEM analysis performed to know about microstructure and EDX analysis(by which proper mixing of the alloying element with the central element would be known). EBSD (Electron Beam Scattered Diffraction) is also performed for more analysis about microstructure, grain size, mixing of different elements in alloys. EBSD is an excellent tool for microanalysis of the material. From the results section, Green density of the alloy, fluidity of the milled powder, Granulometry of the powder, sintered density of the alloy (From Archimedes test), bending strength and bending modulus of the alloy, Elastic modulus by Ultrasonic test, Microstructure of the alloy(By SEM and EBSD Analysis of the sintered part.) are determined. Green density for elemental blend alloys is in the range of (77.42-78.11%) and for Mechanical alloying samples were (74.94-78.58%). Sintered density obtained by Archimedes' test for the elemental blend is in the range of (96.88-98.74%). Bending strength obtained from three-point bending test is in range of (666-2161 MPa), and mechanical alloying is in range of (371-1597 MPa). From the high test, Determined Elastic modulus of the alloy is in range of (95.5-103 GPa) and for Mechanical Alloying elastic modulus was in the range of (66-82 GPa), which would be more suitable for biomedical applications. (From the SEM and EBSD analysis Mechanical alloying are more homogeneous mixing in comparison to Elemental Blend. Green density (just after compaction) for the elemental blend is more than mechanical alloying so that Sintered Density for Elemental Blend is more than Mechanical Alloying. Due to higher sintered density, porosity is more in case of the elemental blend. Also, due to higher porosity, bending strength is low in case of me