Effect of replacing conventional Italian ryegrass by organic nitrogen source systems on chemical soil properties

  1. Baizán, Silvia 1
  2. Vicente, Fernando 2
  3. Oliveira, José A. 3
  4. Afif-Khouri, Elías 3
  5. Martínez-Fernández, Adela 2
  1. 1 Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa (Asturias)
  2. 2 SERIDA, 33300 Villaviciosa (Asturias)
  3. 3 Universidad de Oviedo, Escuela Politécnica de Mieres, Dept. Biología de Organismos y Sistemas. 33600 Mieres (Asturias)
Revista:
Spanish journal of agricultural research

ISSN: 1695-971X 2171-9292

Año de publicación: 2020

Volumen: 18

Número: 4

Tipo: Artículo

DOI: 10.5424/SJAR/2020184-15677 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Spanish journal of agricultural research

Resumen

Aim of study: To evaluate agronomic performance and changes on soil chemical properties in two types of managements: conventional or sustainable.Area of study: Principality of Asturias, Spain.Material and methods: On a sandy-clay-loam texture soil, three winter forage legumes (faba bean, red clover and white lupin), in monoculture or mixed with Italian ryegrass and with organic fertilization (sustainable management) versus Italian ryegrass in monoculture and inorganic fertilization (conventional management) were evaluated during three consecutive years. After the harvest in spring, the rotations were completed with maize crop with the purpose to evaluate the effect of the sustainable management on forage yield and soil chemical parameters.Main results: The results showed that faba bean and red clover in monoculture and mixed with Italian ryegrass had better edaphic quality than Italian ryegrass in monoculture, and white lupin in monoculture or mixed with Italian ryegrass. Faba bean in monoculture and mixed with Italian ryegrass, both with organic fertilization, could be competitive crops since both had yields comparable to Italian ryegrass in monoculture with inorganic fertilization.Research highlights: Current agricultural practice could be changed for a more sustainable management system, including organic fertilization and legume crops.

Información de financiación

National Institute for Agricultural and Food Research and Technology (INIA), co-financed by the European Union ERDF funds. INIA predoctoral fellowship to Silvia Baiz?n RTA2012-00065-C05-01 The authors would like to thank the staff of SERIDA for all the technical assistance and the Instituto de Inves-tigaciones Agrarias Finca La Orden-Valdesequera (CI-CYTEX, Badajoz, Spain) for white lupin seeds supply. Authors would also like to thank consolidated research group Nutrici?n y Sanidad Animal (NYSA IDI/2018/000237) for their participation and collaboration.

Referencias bibliográficas

  • Ahmed M, Rauf M, Mukhtar Z, Saeed NA, 2017. Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environ Sci Pollut Res 24: 26983-26987. https://doi.org/10.1007/s11356-017-0589-7
  • Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrig Drain paper 56. http://www.fao.org/docrep/X0490E/X0490E00.htm#Contents
  • Baldock JO, Higgs LR, Paulson WH, Jacobs JA, Schrader WD, 1981. Legumes and mineral nitrogen effects on crop yields in several crop sequences in the Mississipi Valley. Agron J 73: 885-890. https://doi.org/10.2134/agronj1981.00021962007300050031x
  • Bauer A, Black AL, 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci Soc Am J 58 (1): 185-193. https://doi.org/10.2136/sssaj1994.03615995005800010027x
  • Bot A, Benites J, 2005. The importance of soil organic matter: Key to drought-resistant soil and sustained food production. FAO Soil Bull 80. FAO, Rome, Italy. 78 pp.
  • Butler TJ, Muir JP, 2006. Dairy manure compost improves soil and increases tall wheatgrass yield. Agron J 98: 1090-1096. https://doi.org/10.2134/agronj2005.0348
  • Caravaca F, Masciandaro G, Ceccanti B, 2002. Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Till Res 68: 23-30. https://doi.org/10.1016/S0167-1987(02)00080-6
  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell, J, et al., 2014. Carbon and other biogeochemical cycles. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC; Stocker TF et al. (eds.). pp: 465-544. Cambridge Univ Press, Cambridge, UK.
  • Clemente A, 2016. El año internacional de las legumbres. Mol 16: 70-75.
  • Crème A, Rumpel C, Gastal F, Gil MDLLM, Chabbi A, 2016. Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms. Plant Soil 402 (1-2): 117-128. https://doi.org/10.1007/s11104-015-2740-x
  • de la Roza B, Martínez-Fernández A, Argamentería A, 2002. Determinación de materia seca en pastos y forrajes a partir de la temperatura de secado para análisis. Pastos 32 (1): 91-104.
  • Eriksen J, Askegaard M, Søegaard K, 2014. Complementary effects of red clover inclusion in ryegrass-white clover swards for grazing and cutting. Grass Forage Sci 69: 241-250. https://doi.org/10.1111/gfs.12025
  • Fumagalli P, Comolli R, Ferrè C, Ghiani A, Gentili R, Citterio S, 2014. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: A strategy to increase the benefits of soil phytoremediation. J Environ Manage 145: 35-42. https://doi.org/10.1016/j.jenvman.2014.06.001
  • Gee G, Bauder JW, 1986. Particle-size analysis. In: Methods of soil analysis: Part 1. Klute A, (eds.). pp: 383-411. Am Soc Agron, Madison, WI, USA. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  • Gibson AH, Dreyfus BL, Dommergues YR, 1982. Nitrogen fixation by legumes in the tropics. In: Microbiology of tropical soils and plant productivity. Dommergues YR, Diem GH (eds.). pp: 37-73. Martinus Nijhoff Publ, The Netherlands. https://doi.org/10.1007/978-94-009-7529-3_2
  • Goulding KWT, 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage 32 (3): 390-399. https://doi.org/10.1111/sum.12270
  • Hack H, Bleiholder H, Buhr L, Meier U, Schnock-Fricke U, Weber E, Witzenberger A, 1992. Einheitliche Codierung der Phänologischen Entwicklungsstadien Mono-und Dikotyler Pflanzen-Erweiterte BBCH-Skala, Allgemein. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 44 (12): 265-270.
  • Hesterman OB, 1988. Exploiting forage legumes for nitrogen contribution in cropping systems. In: Cropping strategies for efficient use of water and nitrogen; Hargrove WL (eds.). pp: 155-166. Am Soc Agron, Madison, WI, USA. https://doi.org/10.2134/asaspecpub51.c9
  • Hoekstra NJ, Finn JA, Lüscher A, 2016. The effects of legume content and drought on symbiotic N2 fixation and herbage nitrogen yield. In: The multiple roles of grassland in the European bioeconomy; Höglind M et al. (eds.). Proc 26th General Meeting of the European Grassland Federation, Trondheim, (Norway), Sept 4-8. pp: 820-822.
  • IPCC, 2013. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker TF et al. (eds.). Cambridge Univ Press, Cambridge, UK. 1535 pp.
  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, Morrison MJ, 2011. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32 (2): 329-364. https://doi.org/10.1007/s13593-011-0056-7
  • Jiménez-Calderón JD, Martínez-Fernández A, Prospero-Bernal F, Velarde-Guillén J, Arriaga-Jordán C, Vicente F, 2018. Using manure as fertilizer for maize could improve sustainability of milk production. Span J Agric Res 16 (1): e0601 https://doi.org/10.5424/sjar/2018161-9329
  • Jiménez-Calderón JD, Martínez-Fernández A, Soldado A, González A, Vicente F, 2020. Faba bean-rapeseed silage as substitute for Italian ryegrass silage: effects on performance and milk quality of grazing dairy cows. Anim Prod Sci 60 (7): 913-922. https://doi.org/10.1071/AN17905
  • Junta de Extremadura, 1992. Interpretación de análisis de suelos, foliar y agua de riego. Consejo de abonado (normas básicas). Mundi-Prensa, Madrid. 280 pp.
  • Klute A, 1996. Nitrogen-total. Methods of soil analyses: Part 1. In: Klute A (eds). pp: 595-624. Am Soc Agron, Madison, WI, USA.
  • Köpke U, Nemecek T, 2010. Ecological services of faba bean. Field Crops Res 115 (3): 217-233. https://doi.org/10.1016/j.fcr.2009.10.012
  • Kumar N, Hazra KK, Nath CP, Praharaj CS, Singh U, 2018. Grain legumes for resource conservation and agricultural sustainability in South Asia. In: Legumes for soil health and sustainable management; Meena RS et al. (ads.). pp: 77-107. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_3
  • Ledgard SF, Steele KW, 1992. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 141 (1-2): 137-153. https://doi.org/10.1007/BF00011314
  • Lemke RL, Zhong Z, Campbell CA, Zentner R, 2007. Can pulse crops play a role in mitigating greenhouse gases from North American agriculture? Agron J 99 (6): 1719-1725. https://doi.org/10.2134/agronj2006.0327s
  • Liu M, Gong JR, Pan Y, Luo QP, Zhai ZW, Xu S, Yang LL, 2016. Effects of grass-legume mixtures on the production and photosynthetic capacity of constructed grasslands in Inner Mongolia, China. Crop Pasture Sci 67 (11): 1188-1198. https://doi.org/10.1071/CP16063
  • Lopes T, Hatt S, Xu Q, Chen J, Liu Y, Francis F, 2016. Wheat (Triticum aestivum L.) based intercropping systems for biological pest control. Pest Manag Sci 72 (12): 2193-2202. https://doi.org/10.1002/ps.4332
  • Luo S, Yu L, Liu Y, Zhang Y, Yang W, Li Z, Wang J, 2016. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system. Eur J Agron 81: 78-85. https://doi.org/10.1016/j.eja.2016.09.002
  • Lüscher A, Müller-Harvey I, Soussana JF, Rees RM, Peyraud JL, 2014. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci 69: 206-228. https://doi.org/10.1111/gfs.12124
  • Malomo GA, Madugu AS, Bolu SA, 2018. Sustainable animal manure management strategies and practices. In: Agricultural waste and residues; Aladjadjiyan A (eds.). p: p 119. https://doi.org/10.5772/intechopen.78645
  • Marshall AH, Collins RP, Val J, Lowe M, 2017. Improved persistence of red clover (Trifolium pratense L.) increases the protein supplied by red clover/grass swards grown over four harvest years. Eur J Agron 89: 38-45. https://doi.org/10.1016/j.eja.2017.06.006
  • Martínez-Fernández A, Soldado A, de la Roza-Delgado B, Vicente F, González-Arrojo MA, Argamentería A, 2013. Modelling a quantitative ensilability index adapted to forages from wet temperate areas. Span J Agric Res 11: 455-462. https://doi.org/10.5424/sjar/2013112-3219
  • Miguelañez R, 2017. La alimentación animal necesita proteína vegetal. http://www.euroganaderia.eu/ganaderia/reportajes/la-alimentacion-animal-necesita-proteina-vegetal_2069_11_3242_0_1_in.html
  • Mehlich A, 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun Soil Sci Plan 15 (2): 1409-1416. https://doi.org/10.1080/00103628409367568
  • Miñarro M, 2014. Contribución de los insectos a la polinización del manzano. Fruticultura 37: 18-27.
  • Monti M, Pellicanò A, Santonoceto C, Preiti G, Pristeri A, 2016. Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crop Res 196: 379-388. https://doi.org/10.1016/j.fcr.2016.07.017
  • N'Dayegamiye A, Whalen JK, Tremblay G, Nyiraneza J, Grenier M, Drapeau A, Bipfusuba M, 2015. The benefits of legume crops on corn and wheat yield nitrogen nutrition, and soil properties improvement. Agron J 107: 1653-1665. https://doi.org/10.2134/agronj14.0416
  • Ng JMS, Han M, Beatty PH, Good A, 2016. Genes, meet gases: the role of plant nutrition and genomics in addressing greenhouse gas emissions. In: Plant genomics and climate change: Edwards D & Batley J (eds.). pp: 149-172. Springer, NY. https://doi.org/10.1007/978-1-4939-3536-9_7
  • Oliveira JA, Afif E, Mayor M, 2006. Análisis de suelos y plantas y recomendaciones de abonado. Ediciones Universidad de Oviedo, Oviedo, Spain. 159 pp.
  • Pansu M, Gautheyrou J, 2006. Handbook of soil analysis: Mineralogical, organic and inorganic methods. Springer-Verlag, Heidelberg, Germany. 993 pp. https://doi.org/10.1007/978-3-540-31211-6
  • Papadakis J, 1966. Climates of the world and their agricultural potentialities. DAPCO, Rome, Italy. 173 pp.
  • Peoples MB, Hauggaard-Nielsen H, Jensen ES, 2009. The potential environmental benefits and risks derived from legumes in rotations. Am Soc Agron, Agron Monograph 52: 349-385. https://doi.org/10.2134/agronmonogr52.c13
  • Perramon B, Bosch-Serra AD, Domingo F, Boixadera J, 2016. Organic and mineral fertilization management improvements to a double-annual cropping system under humid Mediterranean conditions. Eur J Agron 76: 28-40. https://doi.org/10.1016/j.eja.2016.01.014
  • Porta-Casanellas J, López-Acevedo Reguerín M, Roquero de Laburu C, 2003. Edafología: para la agricultura y el medio ambiente. Ed Mundi-Prensa. Madrid. 929 pp.
  • Preissel S, Reckling M, Schläfke N, Zander P, 2015. Magnitude and farm economic value of grain legume pre-crop benefits in Europe: a review. Field Crops Res 175: 64-79. https://doi.org/10.1016/j.fcr.2015.01.012
  • Putnam DH, Oplinger ES, Hardman LL, Doll JD, 1989. Lupine, Alternative field crops manual. Univ of Wisconsin-Extens, Coop Extens. Center for Alternative Plant and Animal Products and the Minnesota Extension Service. http://www.hort.purdue. edu/newcrop/afcm/lupine.html
  • R Core Team, 2017. R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  • Ramírez-Bahena MH, Peix A, Velázquez E, Bedmar EJ, 2016. Historia de la investigación en la simbiosis leguminosa-bacteria: una perspectiva didáctica. Arbor 192 (779): a319. https://doi.org/10.3989/arbor.2016.779n3009
  • Reddy PP, 2016. Soil organic matter. In: sustainable intensification of crop production; Reddy PP (ed.). pp: 157-173. Springer, Berlin. https://doi.org/10.1007/978-981-10-2702-4_11
  • Ren T, Wang J, Chen Q, Zhang F, Lu S, 2014. The effects of manure and nitrogen fertilizer applications on soil organic carbon and nitrogen in a high-input cropping system. PloS one 9 (5): e97732. https://doi.org/10.1371/journal.pone.0097732
  • Rochon JJ, Doyle CJ, Greef JM, Hopkins A, Molle G, Sitzia M, Scholefield D, Smith CJ, 2004. Grazing legumes in Europe: A review of their status, management, benefits, research needs and future prospects. Grass Forage Sci 59 (3): 197-214. https://doi.org/10.1111/j.1365-2494.2004.00423.x
  • Roscher C, Thein S, Weigelt A, Temperton VM, Buchmann N, Schulze ED, 2011. N2 fixation and performance of 12 legume species in a 6-year grassland biodiversity experiment. Plant Soil 341: 333-348. https://doi.org/10.1007/s11104-010-0647-0
  • Rubiales D, 2016. El año en que las Naciones Unidas nos recuerdan la importancia de las leguminosas en la dieta y en la agricultura. Arbor 192 (779): a310. https://doi.org/10.3989/arbor.2016.779n3005
  • Schlesinger WH, 2009. On the fate of anthropogenic nitrogen. P Natl Acad Sci USA 106: 203-208. https://doi.org/10.1073/pnas.0810193105
  • SIGA, 2019. Sistema de Información Geográfica de Datos Agrarios. https://sig.mapama.gob.es/siga/
  • SITPA, 2019. Sistema de información territorial del Principado de Asturias y la infraestructura de datos espaciales. http://sitpa.cartografia.asturias.es
  • Smith J, Pearce BD, Wolfe, MS, 2013. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew Agr Food Syst 28 (1): 80-92. https://doi.org/10.1017/S1742170511000585
  • Soil Survey Staff, 2014. Keys to soil taxonomy, 12th ed. USDA-Nat Resour Conserv Serv, Washington, DC. 372 pp.
  • Stagnari F, Maggio A, Galieni A, Pisante M, 2017. Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4 (1): 2. https://doi.org/10.1186/s40538-016-0085-1
  • Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B, 2011. The European nitrogen assessment. Cambridge Univ Press, Cambridge. 611 pp.
  • Tosti G, Guiducci M, 2010. Durum wheat-faba bean temporary intercropping: Effects on nitrogen supply and wheat quality. Eur J Agron 33 (3): 157-165. https://doi.org/10.1016/j.eja.2010.05.001
  • Ward MH, 2009. Too much of a good thing? Nitrate from nitrogen fertilizers and cancer. Rev Environ Health 24: 357-363. https://doi.org/10.1515/REVEH.2009.24.4.357
  • Wuebbles DJ, 2009. Nitrous oxide: no laughing matter. Science 326: 56-57. https://doi.org/10.1126/science.1179571