Optimization of compact fuzzy controllers used for temperature regulation

  1. Espitia-Cuchango, Helbert Eduardo 1
  2. Machón-González, Iván 2
  3. López-García, Hilario 2
  1. 1 Universidad Distrital Francisco José de Caldas
    info

    Universidad Distrital Francisco José de Caldas

    Bogotá, Colombia

    ROR https://ror.org/02jsxd428

  2. 2 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Journal:
Visión electrónica

ISSN: 1909-9746 2248-4728

Year of publication: 2020

Volume: 14

Issue: 1

Type: Article

DOI: 10.14483/22484728.16012 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Visión electrónica

Sustainable development goals

Abstract

This document shows the optimization of different configurations of a compact fuzzy controller for temperature regulation in a room; such configurations are established considering the analogy with different discrete linear controllers; the model is characterized by several heat transfer components. The results show that the optimization process allows adequate tuning of most of the fuzzy controllers. The initial configuration is relevant for the optimization of the controllers; finally, the best result is obtained with the configuration PID of the compact controller.

Bibliographic References

  • Referencias [1] L. Wang, “A course in Fuzzy Systems and Control”, New Jersey: Prentice Hall PTR, 1996.
  • [2] H. Nguyen, N. Prasad, C. Walker and E. Walker, “A First Course in FUZZY and Neural Control”, New York: Chapman and Hall/CRC, 2003. https://doi.org/10.1201/9781420035520
  • [3] H. Khalil, “Nonlinear systems”, 3rd ed. Prentice Hall, 2002.
  • [4] M. M. Ardehali, M. Saboori and M. Teshnelab, “Numerical simulation and analysis of fuzzy PID and PSD control methodologies as dynamic energy efficiency measures”, Energy Conversion and Management, vol. 45, no. 13-14, pp. 1981-1992, 2004. https://doi.org/10.1016/j.enconman.2003.11.003
  • [5] M. M. Ardehali and T. F. Smith, “Development of framework for realization and classification of static and dynamic energy efficiency measures”, Energy Conversion and Management, vol. 48, no. 10, pp. 2630-2637, 2007. https://doi.org/10.1016/j.enconman.2007.04.019
  • [6] G. Jahedi and M. M. Ardehali, “Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system”, Energy Conversion and Management, vol. 52, no. 1, pp. 725-732, 2011. https://doi.org/10.1016/j.enconman.2010.07.051
  • [7] S. Koprda, Z. Balogh and M. Turèani, “Modeling and comparison of fuzzy PID controller with PSD regulation in the discrete systems”, International Journal of Circuits, Systems and Signal Processing, vol. 5, no. 5, pp. 496-504, 2011.
  • [8] S. Safari, M. M. Ardehali and M. J. Sirizi, “Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage”, Energy Conversion and Management, vol. 65, pp. 41-49, 2013. https://doi.org/10.1016/j.enconman.2012.08.012
  • [9] M. H. Athari and M. M. Ardehali, “Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller”, Renewable Energy, vol. 85, pp. 890-902, 2016. https://doi.org/10.1016/j.renene.2015.07.055
  • [10] H. Mora, “Optimización no lineal y dinámica”, Bogotá: Universidad Nacional de Colombia, 2001.
  • [11] R. Babuška, “Fuzzy Modeling for Control”, London, England: Kluwer Academic Publishers Wiley, 1998. https://doi.org/10.1007/978-94-011-4868-9