Discovering learning processes using Inductive MinerA case study with Learning Management Systems (LMSs)

  1. Alejandro Bogarín 1
  2. Rebeca Cerezo 2
  3. Cristóbal Romero 1
  1. 1 Universidad de Córdoba
    info

    Universidad de Córdoba

    Córdoba, España

    ROR https://ror.org/05yc77b46

  2. 2 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Psicothema

ISSN: 0214-9915

Any de publicació: 2018

Volum: 30

Número: 3

Pàgines: 322-329

Tipus: Article

Altres publicacions en: Psicothema

Resum

Background: Process mining with educational data has made use of various algorithms for model discovery, principally Alpha Miner, Heuristic Miner, and Evolutionary Tree Miner. In this study we propose the implementation of a new algorithm for educational data called Inductive Miner. Method: We used data from the interactions of 101 university students in a course given over one semester on the Moodle 2.0 platform. Data was extracted from the platform’s event logs; following preprocessing, the mining was carried out on 21,629 events to discover what models the various algorithms produced and to compare their fi tness, precision, simplicity and generalization. Results: The Inductive Miner algorithm produced the best results in the tests on this dataset, especially for fi tness, which is the most important criterion in terms of model discovery. In addition, when we weighted the various metrics according to their importance, Inductive Miner continued to produce the best results. Conclusions: Inductive Miner is a new algorithm which, in addition to producing better results than other algorithms using our dataset, also provides valid models which can be interpreted in educational terms

Informació de finançament

Authors gratefully acknowledge the financial subsidy provided by Spanish Ministry of Science and Technology TIN2017-83445-P and EDU2014-57571-P. We have also received funds from the European Union and the Principality of Asturias, through its Science, Technology and Innovation Plan (grant GRUPIN14-053).

Finançadors

Referències bibliogràfiques

  • Areces, D., Rodríguez Muñiz, L. J., Suárez Álvarez, J., de la Roca, Y., & Cueli, M. (2016). Information sources used by high school students in the college degree choice. Psicothema, 28(3), 253-259. doi: 10.7334/ psicothema2016.76
  • Bannert, M., Reimann, P., & Sonnenberg, C. (2014). Process mining techniques for analysing patterns and strategies in students’ selfregulated learning. In: Metacognition and learning, 9(2), 161-185. doi:10.1007/s11409-013-9107-6
  • Bogarín, A., Romero, C., Cerezo, R., & Sánchez-Santillán, M. (2014). Clustering for improving educational process mining. In M. Pistilli, J. Willis, & D. Koch (Eds.), Proceedings of the Fourth International Conference on Learning Analytics And Knowledge (pp. 170-181). Indianapolis, USA: ACM. doi:10.1145/2567574.2567604
  • Bogarín, A., Cerezo, R., & Romero, C. (2018). A survey on educational process mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(1). doi:10.1002/widm.1230
  • Bose, R. J. C., & van der Aalst, W. M. (2009, September). Trace clustering based on conserved patterns: Towards achieving better process models. In U. Dayal, J. Eder, J. Koehler & H. Reijers (Eds.), Proceedings of the International Conference on Business Process Management (pp. 170-181). Berlin, Heidelberg: Springer.
  • Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1-13. doi:10.1016/j.iheduc.2015.04.007
  • Buijs, J. C., Van Dongen, B. F., & van Der Aalst, W. M. (2012). On the role of fitness, precision, generalization and simplicity in process discovery. In R. Meersman, H. Panetto, T. Dillon, S. Rinderle-Ma, P, Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, & I. F. Cruz, Proceedings of the OTM Confederated International Conferences” On the Move to Meaningful Internet Systems” (pp. 305-322). Berlin: Springer. doi:10.1007/978-3-642-33606-5_19
  • Brusilovsky, P., & Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. In P. Brusilovski, A. Kobsa & W. Nejdl (Eds.), The adaptive web (pp. 3-53). Berlin: Springer.
  • Cerezo, R., Sánchez-Santillán, M., Paule-Ruiz, M. P., & Núñez, J. C. (2016). Students’ LMS interaction patterns and their relationship with achievement: A case study in higher education. Computers & Education, 96, 42-54. doi:10.1016/j.compedu.2016.02.006
  • Cerezo, R., Núñez, J. C., Rosario, P., Valle, A., Rodríguez, S., & Bernardo, A. (2010). New Media for the promotion of self-regulated learning in higher education. Psicothema, 22(2), 306-315.
  • Dahlstrom, E., Brooks, D. C., & Bichsel, J. (2014). The current ecosystem of learning management systems in higher education: Student, faculty, and IT perspectives (Research report) Retrieved from http:// www. educause. edu/ecar. 2014 EDUCAUSE. CC by-nc-nd
  • Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. IEEE Access, 5, 15991-16005. doi:10.1109/ ACCESS.2017.2654247
  • Emond, B., & Buffett, S. (2015, June). Analyzing Student Inquiry Data Using Process Discovery and Sequence Classifi cation. Paper presented at the International Educational Data Mining Society, Madrid, Spain.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34. doi: 10.1145/240455.240464
  • Leemans, S. J., Fahland, D., & van der Aalst, W. M. (2013, August). Discovering block-structured process models from event logs containing infrequent behaviour. Paper presented at the International Conference on Business Process Management, Beijing, China.
  • Leemans, S. J., Fahland, D., & van der Aalst, W. M. (2014). Process and Deviation Exploration with Inductive Visual Miner. BPM (Demos), 1295, 46.
  • Lust, G., Elen, J., & Clarebout, G. (2013a). Regulation of tool-use within a blended course: student differences and performance effects. Computers & Education, 60(1), 385-395.
  • Lust, G., Elen, J., & Clarebout, G. (2013b, August). Measuring students’ strategy-use within a CMS supported course through students’ tooluse patterns. Paper presented at the 15th biennial conference EARLI 2013, Munich, Germany.
  • Mukala, P., Buijs, J. C. A. M., & Van Der Aalst, W. M. P. (2015). Uncovering learning patterns in a MOOC through conformance alignments (Research report). Retrieved from http://bpmcenter.org/wp-content/ uploads/reports/2015/BPM-15-09.pdf
  • Mukala, P., Buijs, J. C., Leemans, M., & van der Aalst, W. M. (2015, December). Learning Analytics on Coursera Event Data: A Process Mining Approach. Paper presented at the SIMPDA, Viena, Austria.
  • Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Journal of Educational Technology & Society, 17(4), 49.
  • Pechenizkiy, M., Trcka, N., Vasilyeva, E., van Aalst, W., & De Bra, P. (2009, July). Process mining online assessment data. In Educational Data Mining. Paper presented at the International Conference on Educational Data Mining, Córdoba, Spain.
  • Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert systems with applications, 41(4), 1432-1462. doi:10.1016/j.eswa.2013.08.042
  • Reimann, P., Markauskaite, L., & Bannert, M. (2014). E-Research and learning theory: What do sequence and process mining methods contribute? British Journal of Educational Technology, 45(3), 528540. doi:10.1111/bjet.12146
  • Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146. doi:10.1016/j.eswa.2006.04.005
  • Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, 40(6), 601-618. doi:10.1109/TSMCC.2010.2053532
  • Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27.
  • Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384. doi: 10.1016/j.compedu.2007.05.016
  • Romero, C., Cerezo, R., Bogarín, A., & Sánchez-Santillán, M. (2016). Educational process mining: a tutorial and case study using Moodle data sets. In Data Mining and Learning Analytics: Applications in Educational Research (pp. 1-28). Wiley & Blackwell. doi:10.1002/9781118998205.ch1
  • Romero, C., López, M. I., Luna, J. M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers & Education, 68, 458-472.
  • Sanmamed, M. G., Carril, P. C. M., & Álvarez De Sotomayor, I. D. (2017). Factors which motivate the use of social networks by students. Psicothema, 29(2), 204-210. doi: 10.7334/ psicothema2016.127
  • Trcka, N., & Pechenizkiy, M. (2009). From local patterns to global models: Towards domain driven educational process mining. In Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (pp. 1114-1119). New Jersey: The Institute of Electrical and Electronics Engineers. doi:10.1109/ISDA.2009.159
  • Trcka, N., Pechenizkiy, M., & van der Aalst, W. (2010). Process mining from educational data. In C. Romero, S. Ventura, M. Pechenizkiy & R. Baker (Eds.), Handbook of educational data mining (pp. 123-142). Florida: Taylor & Francis.
  • van der Aalst, W. M. (2011). Process Discovery: An Introduction. In Process Mining (pp. 125-156). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-19345-3_5
  • van der Aalst, W. M. (2016). Process mining: data science in action. Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-49851-4
  • van der Aalst, W. M., Schonenberg, M. H., & Song, M. (2011). Time prediction based on process mining. Information systems, 36(2), 450475.
  • van Dongen, B. F. (2007). Process mining and verification. Dissertation Abstracts International, 68(4).
  • Vidal, J. C., Vázquez-Barreiros, B., Lama, M., & Mucientes, M. (2016). Recompiling learning processes from event logs. Knowledge-Based Systems, 100, 160-174. doi:10.1016/j.knosys.2016.03.003
  • Weijters, A.J.M.M., van Der Aalst, W.M., & De Medeiros, A.A. (2006). Process mining with the heuristics miner-algorithm. Technische Universiteit Eindhoven Technology Reports, 166, 1-34.
  • Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational psychologist, 25(1), 3-17.