Relación entre la permeabilidad teórica y experimental en suelos del entorno de Oviedo (Asturias, NW de España)

  1. A. García Fernández 1
  2. V. G. Ruiz de Argandoña 1
  3. A, Setién 1
  4. A. Rodríguez-Rey 1
  5. L. Calleja 1
  1. 1 Departamento de Geología. Universidad de Oviedo
Revue:
Trabajos de geología

ISSN: 0474-9588

Année de publication: 2016

Titre de la publication: Marcos Vallaure

Número: 36

Pages: 191-202

Type: Article

D'autres publications dans: Trabajos de geología

Résumé

The permeability to water of three soils in the surroundings of Oviedo (N of Spain) and its relationship with some of their index properties has been studied. The characterization and geotechnical classification made in the field allow us to distinguish three soil types: an alluvial soil (Nora), a colluvial soil (Ules) and an eluvial soil (Piedramuelle). The index properties for classifying soils according to the Unified System of Soil Classification (USCS) have been measured in the laboratory. The theoretical and experimental permeability coefficients have been determined, using a steady flow permeameter for the experimental one. The comparison between these coefficients and their relationship with the soil index properties have been studied.

Références bibliographiques

  • ALYAMANI, M. S., y SEN, Z. (1993): Determination of hydraulic conductivity from grain size distribution curves. Groundwater, 31: 551-555.
  • BARR, D. W. (2001): Coefficient of permeability de-termined by measurable parameters. Grounwater, 39 (3): 356-361.
  • BOADU, F. K. (2000): Hydraulic conductivity of soils from grain-size distribution: new models. Journal of Geotechnical and Geoenvironmental Engineering,126: 739-746.
  • CABALAR, A. F. y AKBULUT, N. (2016): Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. SpringerPlus, 5(1): 820.
  • CASAGRANDE, A. (1948): Classification and identification of soils. American Society of Civil Engineers, 113: 901-991.
  • CHAPUIS, R. P. (2012): Predicting the saturated hydraulic conductivity of soils. a review. Bulletin of Engineering Geology and the Environment, 71: 401-434.
  • DAS, B. M. (2008): Advanced soil mechanics. Taylor & Francis, New York, 567 p.
  • DE GROOT, D. J., OSTENDORF, D. W., y JUDGE, A.I. (2012): In situ measurement of hydraulic conductivity of saturated soils. Geotechnical Engineering, Journal of the SEAGS & AGSSEA, 43(4): 63-72.
  • GONZÁLEZ FERNÁNDEZ, B., MENÉNDEZ CASARES, E. y GUTIÉRREZ CLAVEROL (2004): Revisión y síntesis litoestratigráfica del sector occidental de la cuenca cretácica de Asturias. Trabajos de Geología, 24: 43-80.
  • GUTIÉRREZ CLAVEROL, M. y TORRES ALONSO, M. (1995): Geología de Oviedo. Ediciones Paraíso, 276 p.
  • HAZEN, A. (1892): Some physical properties of sands and gravel, with special reference to their use infiltration. 24th Annual report, Massachusetts state board of health, Pub. Doc., 34: 539-556.
  • HOLTZ, R. D., KOVACKS, W. D. y SHEAHAN, T. C. (2011): An introduction to Geotechnical Engineering. Prentice-Hall, Upper Saddle River, 853 p.
  • JABRO, J. D. (1992): Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. American Society of Agricultural Engineers Journal, 35 (2): 557-560.
  • JULIVERT, M. (1967): La ventana del Río Monasterio y la terminación meridional del Manto del Ponga. Trabajos de Geología, 1: 59-76.
  • KASENOW, M. (2010): Determination of hydraulic conductivity from grain size analysis. Water Resources Publications, LLC, Highlands Ranch, Colorado, 196 p.
  • LOTZE, F. (1945): Zur Gliderung der Varisciden der Iberischen Meseta. Geotekt. Forsch., 6: 78-92.
  • Manual de Tierras (1980): Earth Manual. United Sates Department of the Interior, Bureau of Reclamation, Editorial Técnica Bellisco, 800 p.
  • ODONG, J. (2007): Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. Journal of American Science, 3 (3): 54-60.
  • SALARASHAYERI, A. F. y SIOSEMARDE, M. (2012): Prediction of soil hydraulic conductivity from particle-size distribution. International Journal of Environment, Chemical, Ecological and Geophysical Engineering, 6 (1): 16-20.
  • TERZAGHI, K. Y PECK, R. B. (1964): Soil Mechanics in Engineering Practice. John Wiley and Son, New York.
  • UNE 103-104 (1993): Determinación de límite plástico de un suelo. AENOR, 2 p.
  • UNE 103-103 (1994): Determinación de límite líquido de un suelo por el método del aparato de Casa-grande. AENOR, 10 p.
  • UNE 103-302 (1994): Determinación de la densidad relativa de las partículas de un suelo. AENOR, 4 p.
  • UNE 103-100 (1995): Preparación de muestras para ensayos de suelos. AENOR, 6 p.
  • UNE 103-101 (1995): Análisis granulométrico de suelos por tamizado. AENOR, 10 p.
  • UNE 7050-3 (1997): Tamices y tamizado de ensayo. Parte 3: Exigencias técnicas y verificaciones de los tamices de ensayo de tela mecánica. AENOR, 10 p.
  • UNE 103-403 (1999): Determinación de la permeabilidad de una muestra de suelo. Método de carga constante. AENOR, 16 p.
  • URUMOVIC, K. y URUMOVIC, Sr. K. (2014): The effective porosity and grain size relations in permeability functions. Hydrology and Earth System Sciences, 11: 6675-6714.
  • VUKOVIC, M. y SORO A. (1992): Determination of Hydraulic Conductivity of Porous Media from Grain Size Distribution. Water Resources Publications, Littleton, Colorado.