Data analysis of incomplete repeated measures using a multivariate extension of the Brown-Forsythe procedure

  1. Guillermo Vallejo Seco 1
  2. María Paula Fernández García 1
  3. Pablo Esteban Livacic Rojas 2
  4. Ellián Tuero Herrero 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  2. 2 Universidad de Santiago de Chile
    info

    Universidad de Santiago de Chile

    Santiago de Chile, Chile

    ROR https://ror.org/02ma57s91

Aldizkaria:
Psicothema

ISSN: 0214-9915

Argitalpen urtea: 2018

Alea: 30

Zenbakia: 4

Orrialdeak: 434-441

Mota: Artikulua

Beste argitalpen batzuk: Psicothema

Laburpena

Background: A multivariate extension of the Brown-Forsythe (MBF) procedure can be used for the analysis of partially repeated measure designs (PRMD) when the covariance matrices are arbitrary. However, the MBF procedure requires complete data over time for each subject, which is a significant limitation of this procedure. This article provides the rules for pooling the results obtained after applying the same MBF analysis to each of the imputed datasets of a PRMD. Method: Montecarlo methods are used to evaluate the proposed solution (MI-MBF), in terms of control of Type I and Type II errors. For comparative purposes, the MBF analysis based on the complete original dataset (OD-MBF) and the covariance pattern model based on an unstructured matrix (CPM-UN) were studied. Results: Robustness and power results showed that the MI-MBF method performed slightly worse than tests based on CPM-UN when the homogeneity assumption was met, but slightly better when that assumption was not met. We also note that without assuming equality of covariance matrices, little power was sacrificed by using the MI-MBF method in place of the OD-MBF method. Conclusions: The results of this study suggest that the MI-MBF method performs well and could be of practical use.

Finantzaketari buruzko informazioa

We thank the three anonymous reviewers for valuable comments and suggestions. This research was supported by grant PSI-2015-67630-PSIC (AEI/FEDER, UE) from the Spanish Ministry of Economy and Competitiveness, and by grant 1170642 (FONDECYT) from the Chilean National Fund for Scientific and Technological Development.

Erreferentzia bibliografikoak

  • Austin, P.C. (2009). Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. The International Journal of Biostatistics, 5, 13-38. doi.org/10.2202/1557-4679.1146
  • Bathke, A.C., Schabenberger, O., Tobias, R.D., & Madden, L.V. (2009). Greenhouse-Geisser adjustment and the ANOVA-type statistic: Cousins or twins? The American Statistician, 63, 239-246. doi. org/10.1198/tast.2009.08187
  • Bono, R., Blanca, M.J., Arnau, J., & Gómez-Benito, J. (2017). Non-normal distributions commonly used in health, education, and social sciences: A systematic review. Frontiers in Psychology, 8. doi.org/10.3389/ fpsyg.2017.01602
  • Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, 9, 78-84. doi.org/10.1027/1614-2241/a000057
  • Brunner, E., Munzel, U., & Puri, M.L. (2002). The multivariate nonparametric Behrens-Fisher problem. Journal of Statistical Planning and Inference, 108, 37-53. doi.org/10.1191/0962280205sm392oa
  • Cain, M.K., Zhang, Z., & Yuan, K.H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49, 1716-1735. doi.org/10.3758/s13428-016-0814-1
  • Fitzmaurice, G., Laird, N., & Ware, J. (2011). Applied longitudinal analysis (2nd edition). Hoboken, NJ: Wiley.
  • Friedrich, S., Konietschke, F., & Pauly, M. (2017). A wild bootstrap approach for nonparametric repeated measurements. Computational Statistics & Data Analysis, 113, 38-52. doi.org/10.1016/j.csda.2016.06.016
  • Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed datasets: A simulation study. Methodology, 12, 75-88. doi.org/10.1027/ 1614-2241/a000111
  • Hertzog, C., Lindenberger, U., Ghisletta, P., & von Oertzen, T. (2008). Evaluating the power of latent growth curve models to detect individual differences in change. Structural Equation Modeling, 15, 541-563. doi. org/10.1080/10705510802338983
  • Kenward, M., & Carpenter, J. (2007). Multiple imputation: Current perspectives. Statistical Methods in Medical Research, 16, 199-218. doi.org/10.1177/0962280206075304
  • Kowalchuk, R.K., Keselman, H.J., & Algina, J. (2003). Repeated measures interaction test with aligned ranks. Multivariate Behavioral Research, 38, 433-461.doi.org/10.1207/ s15327906mbr3804_2
  • Li, K.H., Meng, X L., Raghunathan, T.E., & Rubin, D.B. (1991). Significance levels from repeated p-values with multiply imputed data. Statistica Sinica, 1, 65-92.
  • Li, K.H., Raghunathan, T.E., & Rubin, D.B. (1991). Large-sample signifi cance levels from multiply imputed data using moment-based statistic and an F-reference distribution. Journal of the American Statistical Association, 86, 1065-73. doi.org/10.1080/ 01621459.1991.10475152
  • Livacic-Rojas, P.E., Vallejo, G. Fernández, P., & Tuero-Herrero, E. (2017). Power of modified Brown-Forsythe and mixed-model approaches in split-plot designs. Methodology, 13, 9-22. doi.org/10.1027/1614-2241/ a000124
  • Lix, L.M., Algina, J., & Keselman, H.J. (2003). Analyzing multivariate repeated measures designs: A comparison of two approximate degrees of freedom procedures. Multivariate Behavioral Research, 38, 403431. doi.org/10.1207/s15327906mbr3804_1
  • Meng, X.L., & Rubin, D.B. (1992). Performing likelihood ratio tests with multiply imputed data set. Biometrika, 79, 103-111. doi.org/10.1093/ biomet/79.1.103
  • Oliver-Rodríguez, J.C., & Wang, X.T. (2015). Non-parametric three-way mixed ANOVA with aligned rank tests. British Journal of Mathematical and Statistical Psychology, 68, 23-42. doi.org/10.1111/bmsp.12031
  • Paniagua, D., Amor, P.J., Acheburúa, E., & Abad, F.J. (2017). Comparison of methods for dealing with missing values in the EPV-R. Psicothema, 29, 384-389. doi.org/10.7334/psicothema2016.75
  • Raghunathan, T. (2016). Missing Data Analysis in Practice. Boca Raton, FL: Chapman and Hall/CRC.
  • Raghunathan, T., & Dong, Q. (2011). Analysis of variance from multiply imputed data sets. Unpublished manuscript, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan. Retrieved from http://www-personal.umich.edu/_teraghu/ Raghunathan-Dong.pdf.
  • Ripley, B E. (1987). Stochastic Simulation. New York: Wiley. Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley. Rubin, D.B., & Schenker, N. (1986). Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of the American Statistical Association, 81, 366-374. doi.org/ 10.1080/01621459.1986.10478280
  • SAS Institute, Inc (2017). SAS/STAT® 14.3 user’s guide. Cary, NC: SAS Institute, Inc.
  • Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall.
  • Vallejo, G., & Ato, M. (2006). Modifi ed Brown-Forsythe procedure for testing interaction effects in split-plot designs. Multivariate Behavioral Research, 41, 549-578.
  • Vallejo, G., & Ato, M. (2012). Robust tests for multivariate factorial designs under heteroscedasticity. Behavior Research Methods, 44, 471-489. doi.org/10.1207/s15327906mbr4104_6
  • Vallejo, G., Arnau, J., & Ato, M. (2007). Comparative robustness of recent methods for analyzing multivariate repeated measures. Educational & Psychological Measurement, 67, 1-27. doi. org/10.1177/0013164406294777
  • Vallejo, G., Fernández, P., Herrero, F.J., & Conejo, N. M. (2004). Alternative procedures for testing fixed effects in repeated measures designs when assumptions are violated. Psicothema, 16, 498-508.
  • Vallejo, G., Ato, M., Fernández, M. P., & Livacic-Rojas, P.E. (in press). Sample size estimation for heterogeneous growth curve models with attrition. Behavior Research Method. doi.org/10.3758/s13428-0181059-y
  • Vallejo, G., Fernández, M.P., Livacic-Rojas, P.E., & Tuero-Herrero, E. (2011a). Comparison of modern methods for analyzing unbalanced repeated measures data with missing values. Multivariate Behavioral Research, 46, 900-937. doi.org/10.1080/00273171.201 1.625320
  • Vallejo, G., Fernández, M.P., Livacic-Rojas, P.E., & Tuero-Herrero, E. (2011b). Selecting the best unbalanced repeated measures model. Behavior Research Methods, 43, 18-36. doi.org/10.3758/s13428-0100040-1
  • Vallejo, G., Moris, J., & Conejo, N. (2006). A SAS/IML program for implementing the modified Brown-Forsythe procedure in repeated measures designs. Computer Methods & Programs in Biomedicine, 83, 169-177. doi.org/10.1016/j.cmpb.2006.06.006
  • Van Ginkel, J.R., & Kroonenberg, P.M. (2014). Analysis of variance of multiply imputed data. Multivariate Behavioral Research, 49, 78-91. doi.org/10.1080/00273171.2013.855890
  • Weerahandi, S. (2004). Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models. New Jersey, NJ: John Wiley & Sons.
  • Xu, L.W. (2015). Parametric bootstrap approaches for two-way MANOVA with unequal cell sizes and unequal cell covariance matrices. Journal of Multivariate Analysis, 133, 291-303. doi.org/10.1016/j. jmva.2014.09.015