Power analysis to detect treatment effect in longitudinal studies with heterogeneous errors and incomplete data

  1. Guillermo Vallejo 1
  2. Manuel Ato 2
  3. Paula Fernández García 1
  4. Pablo E. Livacic Rojas 3
  5. Ellián Tuero Herrero 1
  1. 1 Universidad de Oviedo (España)
  2. 2 Universidad de Murcia (España)
  3. 3 Universidad de Santiago de Chile (Chile)
Revista:
Psicothema

ISSN: 0214-9915

Año de publicación: 2016

Volumen: 28

Número: 3

Páginas: 330-339

Tipo: Artículo

Otras publicaciones en: Psicothema

Resumen

Background: S. Usami (2014) describes a method to realistically determine sample size in longitudinal research using a multilevel model. The present research extends the aforementioned work to situations where it is likely that the assumption of homogeneity of the errors across groups is not met and the error term does not follow a scaled identity covariance structure. Method: For this purpose, we followed a procedure based on transforming the variance components of the linear growth model and the parameter related to the treatment effect into specific and easily understandable indices. At the same time, we provide the appropriate statistical machinery for researchers to use when data loss is unavoidable, and changes in the expected value of the observed responses are not linear. Results: The empirical powers based on unknown variance components were virtually the same as the theoretical powers derived from the use of statistically processed indexes. Conclusions: The main conclusion of the study is the accuracy of the proposed method to calculate sample size in the described situations with the stipulated power criteria.

Referencias bibliográficas

  • Amatya, A., Bhaumik, D., & Gibbons, R.D. (2013). Sample size determination for clustered count data. Statistics in Medicine, 32, 4162-4179.
  • Ato, M., & Vallejo, G. (2015). Diseños de investigación en Psicología. Madrid: Pirámide.
  • Feingold, A. (2009). Effect sizes for growth-modeling analysis for controlled clinical trials in the same metric as for classical analysis. Psychological Methods, 14, 43-53.
  • Fraser, M. W., Galinsky, M. J., Smokowski, P. R., Day, S. H., Terzian, M. R., et al. (2005). Social information-processing skills training to promote social competence and prevent aggressive behavior in the third grades. Journal of Consulting and Clinical Psychology, 73, 1045-1055.
  • Hedeker, D., Gibbons, R. D., & Waternaux, C (1999). Sample size estimation for longitudinal designs with attrition. Journal of Educational and Behavioral Statistics, 24, 70-93.
  • Heo, M. (2014). Impact of subject attrition on sample size determinations for longitudinal cluster randomized clinical trials. Journal of Biopharmaceutical Statistics, 24, 507-522.
  • Heo, M., Xue, X., & Kim, M. Y. (2013). Sample size requirements to detect and intervention by time interaction in longitudinal cluster randomized clinical trials with random slopes. Computational Statistics and Data Analysis, 60, 169-178.
  • Núñez, J. C., Rosário, P., Vallejo, G., & González-Pienda, J. A. (2013). A longitudinal assessment of the effectiveness of a school-based mentoring program in middle school. Contemporary Educational Psychology, 38, 11-21.
  • Muthén, B. O., & Curran, P. J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2, 371-402.
  • O’Kelly, M., & Ratitch, B. (2014). Analysis under missing-not-at-random assumptions. In M. O’Kelly & B. Ratitch (Eds.), Clinical Trials with Missing Data. A Guide for Practitioners (pp. 257-368). New York, NY: Wiley.
  • Raudenbush S. W., Liu, X. (2001). Effects of study duration, frequency of observation, and sample size on power in studies of group differences in polynomial change. Psychological Methods, 6, 387-401.
  • Roy, A., Bhaumik, D. K., Aryal, S., & Gibbons, R. D. (2007). Sample size determination for hierarchical longitudinal designs with differential attrition rates. Biometrics, 63, 699-707.
  • Rye, M. S., Pargament, K. I., Pan, W., Yingling, D. W., Shogren, K. A., & Ito, M. (2005). Can group interventions facilitate forgiveness of an exspouse? A randomized clinical trial. Journal of Consulting and Clinical Psychology, 73, 880-892.
  • Satorra, A., & Saris, W. E. (1985). The power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 83-90.
  • Shieh, G. (2003). A comparative study of power and sample size calculations for multivariate general linear models. Multivariate Behavioral Research, 38, 285-307.
  • Usami, S. (2014). A convenient method and numerical tables for sample size determination in longitudinal-experimental research using multilevel models. Behavior Research Methods, 46, 1207-1219.
  • Vallejo, G., Fernández, M. P., Cuesta, M., & Livacic-Rojas, P. E. (2015). Effects of modeling the heterogeneity on inferences drawn from multilevel designs. Multivariate Behavioral Research, 50, 73-88.
  • Wänström, L. (2009). Sample sizes for two-group second-order latent growth curve models. Multivariate Behavioral Research, 44, 588-619.