Una herramienta eficaz en el estudio de la Botánica: la citometría de flujo

  1. Cires Rodríguez, Eduardo 1
  2. Cuesta Moliner, Candela 2
  1. 1 Universidad de Oviedo, Departamento de Biología de Organismos y Sistemas, Catedrático Rodrigo Uría s/n, 33071 Oviedo, España.
  2. 2 Current address: Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Bélgica
Revista:
Cuadernos de biodiversidad

ISSN: 1575-5495

Año de publicación: 2011

Número: 37

Páginas: 19-25

Tipo: Artículo

DOI: 10.14198/CDBIO.2011.37.03 DIALNET GOOGLE SCHOLAR lock_openRUA editor

Otras publicaciones en: Cuadernos de biodiversidad

Resumen

Over the last decade there has been a tremendous increase in the use of flow cytometry (FCM) in studies on the biosystematics, ecology and population biology of vascular plants. Most studies, address questions related to spatial distribution and evolutionary significance of genome duplication (polyploidy), chromosomal variation (aneuploidy) and variation in genome size. The unsurpassed speed and reliability of estimating differences in nuclear DNA content by FCM paves the way for large-scale surveys at the landscape, population, individual and tissue levels. Another attractive feature of FCM is the possibility of reformulating former taxonomic concepts to propose robust classifications based on a detailed understanding of population structure and phenotypic variation of plant groups under investigation. In this review, special attention is paid to FCM as applied to Botany studies, and some new and less wellknown uses of it for plants will be discussed. It is likely that in the future the use of FCM in studies on taxonomy, ecology and population biology of plants will increase both in scope and frequency. Flow cytometry alone, but especially in combination with other molecular and phenotypic approaches, promises advances in our understanding of the functional significance of variation in genome size in plants.

Referencias bibliográficas

  • ARUMUGANATHAN, K. & E. D. EARLE. 1991. Estimation of nuclear DNA amounts of plants by flow cytometry. Pl. Molec. Biol. Reporter 9(3): 229-241.
  • BENNETT, M. D. & I. J. LEITCH. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann. Bot. (Oxford) 107(3): 467-590.
  • CIRES, E., C. CUESTA, M. A. FERNÁNDEZ CASADO, H. S. NAVA, V. M. VÁZQUEZ & J. A. FERNÁNDEZ PRIETO. 2011. Isolation of plant nuclei suitable for flow cytometry from species with compounds extremely mucilaginous: An example in the genus Viola L. (Violaceae). Anales Jard. Bot. Madrid 68(2). DOI:10.3989/ajbm.2273 (en prensa).
  • CIRES, E. & j. A. FERNÁNDEZ PRIETO. 2011. The Iberian endemic species Ranunculus cabrerensis Rothm.: an intricate history in the Ranunculus parnassiifolius L. polyploid complex. Plant Syst. Evol. DOI:10.1007/s00606-011-0529-9 (en prensa).
  • DOLEZEL, J., J. BARTOS , H. VOGLMAYR & J. GREILHUBER. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51A: 127-128.
  • DOLEZEL, J., P. BINAROVÁ & S. LUCRETTI. 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biologia Plantarum 31(2): 113-120.
  • DOLEZEL, J., M. DOLEZELOVÁ & F. J. NOVÁK. 1994. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum 36: 351-357.
  • DOLEZEL, J. & W. GÖHDE. 1995. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19: 103-106.
  • DOLEZEL, J., J. GREILHUBER, S. LUCRETTI, A. MEISTER, M. LYSÁK, L. NARDI & R. OBERMAYER. 1998. Plant genome size estimation by flow cytometry: interlaboratory comparison. Ann. Bot. (Oxford) 82 (Supplement A): 17-26.
  • DOLEZEL, J., S. SGORBATI & S. LUCRETTI. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Pl. (Copenhagen) 85: 625-631.
  • GALBRAITH, D. W., K. R. HARKINS, J. M. MADDOX, N. M. AYRES, D. P. SHARMA & E. FIROOZABADY. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051.
  • GREILHUBER, J. & J. DOLEZEL. 2009. 2C or not 2C: a closer look at cell nuclei and their DNA content. Chromosoma 118: 391-400.
  • GREILHUBER, J., J. DOLEZEL, M. A. LYSÁK & M. D. BENNETT. 2005. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. (Oxford) 95: 255-260.
  • LOUREIRO, J., E. RODRIGUEZ, J. DOLEZEL & C. SANTOS. 2006. Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann. Bot. (Oxford) 98: 679-689.
  • LYSÁK, M. A. & J. DOLEZEL. 1998. Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52: 123-132.
  • MCCARTHY, D. A. 2007. Fluorochromes and fluorescence. En: M.G. MACEY (ED.), Flow cytometry: principles and applications. Humana Press, New jersey. Pp. 59-112.
  • OTTO, F. 1990. DAPI staining of fixed cells for highresolution flow cytometry of nuclear DNA. En: H. A. CRISSMAN & Z. DARZYNKIEWICZ (EDS.), Methods in Cell Biology (Vol. 33). Academic Press, New York. Pp. 105-110.
  • PFOSSER, M., A. AMON, T. LELLEY & E. HEBERLEBORS. 1995. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21: 387-393.
  • SUDA, J., A. KRAHULCOVÁ, P. TRÁVNÍCEK, & F. KRAHULEC. 2006. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55(2): 447-450.