Estimación de la densidad de especies de coníferas a partir de variables ambientales

  1. Pablo Martínez-Antúnez
  2. J. Ciro Hernández-Díaz
  3. Christian Wehenkel
  4. Carlos Antonio López-Sánchez
Journal:
Madera y bosques

ISSN: 2448-7597 1405-0471

Year of publication: 2015

Volume: 21

Issue: 1

Pages: 23-33

Type: Article

DOI: 10.21829/MYB.2015.211430 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Madera y bosques

Abstract

Conifers are the most important source of raw material for the Mexican timber industry, besides they are a source of environmental services and are habitat of many living organisms. In order to evaluate if it is possible to predict species density of conifers by utilizing environmental variables, this study was conducted using multiple linear regression analysis by the method known as stepwise. Twenty species of conifers of five different genus and eleven environmental variables were analyzed. The results revealed that there is a small linear relationship between the abundance of the species and the analyzed predictors. However, some of the study findings indicate that the abundance for 60% of the selected conifer species is affected by at least four environmental variables, including mainly, the precipitation during the growing season (April to September), the average length of the frost-free period, the altitude above the sea level and the mean annual precipitation.

Bibliographic References

  • Aitken, S., Yeaman, N.S., Holliday, J.A., Wang, T., Curtis-McLane, S.. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications. 1. 95-111
  • Aragón-Piña, E.E., Garza-Herrera, A., González-Elizondo, M.S., Luna-Vega, I.. (2010). Composición y estructura de las comunidades vegetales del rancho El Durangueño, en la Sierra Madre Occidental, Durango, México. Revista Mexicana de Biodiversidad. 81. 771-787
  • Breiman, L., Friedman, J.H., Olshen, R.A., Stone, J.. (1984). Classification and regression trees. Wadsworth International Group. Belmont. 102-116
  • (2009). Manual y procedimientos para el muestreo de campo - Inventario Nacional Forestal y de Suelos.
  • Crausbay, S.D., Hotchkiss, S.C.. (2010). Strong relationships between vegetation and two perpendicular climate gradients high on a tropical mountain in Hawai‘i. Journal of Biogeography. 37. 1160-1174
  • Crookston, N.L., Rehfeldt, E.G., Ferguson, D.E., Warwell, M.. (2008). Third forest vegetation simulator Conference. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fort Collins. 7-16
  • Desai, A.R., Noormets, A., Bolstad, P.V., Chen, J., Cook, B.D., Davis, K.J., Euskirchen, E.S., Gough, C., Martin, J.G., Ricciuto, D.M., Schmid, H.P., Tang, J., Wang, W.. (2008). Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: implications for regional scaling. Agricultural and Forest Meteorology. 148. 288-308
  • García, E.. (1998). Climas (Clasificación de Köppen, modificada por García) Escala 1:1 000 000. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México^eD.F. D.F..
  • González-Elizondo, M.S., González-Elizondo, M., Tena-Flores, J.A., Ruacho-González, L., López-Enríquez, I.L.. (2012). Vegetación de la Sierra Madre Occidental, México: una síntesis. Acta Botanica Mexicana. 100. 351-403
  • Goparaju, L., Jha, C.S.. (2010). Spatial dynamics of species diversity in fragmented plant communities of a Vindhyan dry tropical forest in India. Tropical Ecology. 51. 55-65
  • Hu, W., Mengersen, K., Tong, S.. (2010). Risk factor analysis and spatiotemporal CART model of cryptosporidiosis in Queensland, Australia. BMC infectious diseases. 10. 311
  • Hutchinson, M.F.. (2004). ANUSPLIN version 4.3 user guide. Centre for Resource and Environmental Studies. The Australian National University. Canberra. 54
  • Jabro, J.D., Evans, R.G., Kim, Y.. (2009). Estimating in situ soil-water retention and field water capacity in two contrasting soil textures. Irrigation Science. 27. 223-229
  • Jahan, N., Gan, T.Y.. (2011). Modelling the vegetation-climate relationship in a boreal mixedwood forest of Alberta using normalized difference and enhanced vegetation indices. International Journal of Remote Sensing. 32. 313-335
  • Jonsson, B., Holm, S., Kallur, H.. (1992). A forest inventory method based on density-adapted circular plot size. Scandinavian Journal of Forest Research. 7. 405-421
  • Li, Y., Bunting, M.J., Xu, Q., Jiang, S., Ding, W., Hun, L.. (2011). Pollen-vegetation-climate relationships in some desert and desert-steppe communities in northern China. The Holocene. 21. 997-1010
  • Li, Z., Guo, X.. (2012). Detecting climate effects on vegetation in northern mixed prairie using NOAA AVHRR 1-km time-series NDVI data.
  • Martínez-Antúnez, P., Wehenkel, C., Hernández-Díaz, J.C., González-Elizondo, M., Corral-Rivas, J.J., Pinedo-Álvarez, A.. (2013). Effect of climate and physiography on the density of trees and shrubs species in Northwest Mexico.
  • Meng, M., Ni, J., Zong, M.. (2011). Impacts of changes in climate variability on regional vegetation in China: NDVI-based analysis from 1982 to 2000. Ecological Research. 26. 421-428
  • Michaelian, M., Hogg, E.H., Hall, R., Arsenault, E.. (2011). Global Change Biology. 17. 2084-2094
  • Moreno, J.M.. (2008). Evaluación preliminar de los impactos en España por efecto del cambio climático. Boletín CF+ S.
  • Nord-Larsen, T., Cao, Q.V.. (2006). A diameter distribution model for even-aged beech in Denmark. Forest Ecology and Management. 231. 218-225
  • Pomareda, C.. (1980). Introducción al uso del programa SAS para análisis de regresión. Instituto Interamericano de Ciencias Agrícolas.
  • Rehfeldt, G.E., Crookston, N.L., Sáenz-Romero, C., Campbell, E.M.. (2012). North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Ecological Applications. 22. 119-141
  • Rehfeldt, G.E., Crookston, N.L., Warwell, M.V., Evans, J.S.. (2006). International Journal of Plant Sciences. 167. 1123-1150
  • Rzedowski, J.. (1978). Vegetación de México. Limusa. México^eD.F. D.F.. 432
  • Sáenz-Romero, C., Rehfeldt, G.E., Crookston, N.L., Duval, P., St-Amant, R., Beaulieu, J., Richardson, B.A.. (2010). Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation.
  • (2001). SAS/STAT 9.1 User’s Guide. SAS Institute Inc. Cary^eNC NC.
  • Silva-Flores, R., Perez-Verdin, G., Wehenkel, C.. (2014). Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico. PLoS ONE. 9.
  • Soberón, J.M., Peterson, A.T.. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics. 2. 1-10
  • Torres-Rojo, J.M.. (2005). Predicción de distribuciones diamétricas multimodales a través de mezclas de distribuciones Weibull. Agrociencia. 39. 211-220
  • Wang, T., Shiqiang, Z.. (2011). Study on linear correlation coefficient and nonlinear correlation coefficient in mathematical statistics. Studies in Mathematical Sciences. 3. 58-63
  • Wehenkel, C., Corral-Rivas, J.J., Hernández-Díaz, J.C.. (2011). Genetic diversity in relation to secondary succession of forest tree communities. Polish Journal of Ecology. 59. 45−54
  • Wittmer, M.H., Auerswald, K., Bai, Y., Schaeufele, R., Schnyder, H.. (2010). Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Global Change Biology. 16. 605-616
  • Worrall, J.J., Egeland, L., Eager, T., Mask, R.A., Johnson, E.W., Kemp, P.A., Shepperd, W.D.. (2008). Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management. 255. 686-696
  • Zhu, Q., Jiang, H., Liu, J., Peng, C., Fang, X., Yu, S., Zhou, G., Wei, X., Ju, W.. (2011). Forecasting carbon budget under climate change and CO2 fertilization for subtropical region in China using integrated biosphere simulator (IBIS) model. Polish Journal of Ecology. 59. 3-24