La interacción entre claves en el condicionamiento clásicoun ejemplo desde la Teoría de la Detección de Señales

  1. Clara Muñiz-Diez 1
  2. Beatriz Álvarez 1
  3. Ignacio Loy 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revue:
REMA

ISSN: 1135-6855

Année de publication: 2015

Volumen: 20

Número: 2

Pages: 11-32

Type: Article

DOI: 10.17811/REMA.20.2.2015.11-32 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

D'autres publications dans: REMA

Résumé

Classical conditioning allows relating the fundamental research in non-human animals with contingency assessment tasks in humans, given that animals judge the relationship between a conditioned stimulus and an unconditioned stimulus in a way akin to humans judge the relationship between a cue and an outcome. Classical conditioning has been traditionally explained by associative models, but these models have been demonstrated have some limitations. Signal Detection Theory (SDT) can be a more appropriate alternative. In the present experiment contingency assessment is analyzed in four groups of rats that were exposed to a tone that was always followed by food (100%), and a tone-click compound for which different contingencies of reinforcement were employed (100%, 66%, 33% and 0%). The general design was A+/ AX+. The group in which the compound was always reinforced (100%) showed augmentation and blocking. In contrast, second order conditioning and conditioned inhibition were observed when the compound contingency reinforcement was 0%. The results showed that these phenomena appeared in different moments of training for the mentioned groups, whereas groups with intermediate reinforcement (33% and 66%) showed intermediate results. Results are analyzed using associative learning methodologies and TDS techniques. Theoretical implications of applying SDT to associative learning are discussed.

Références bibliographiques

  • Allan, L. G., Hannah, S. D., Crump, M. J. C., & Siegel, S. (2008). The psychophysics of contingency assessment. Journal of Experimental Psychology: General, 137, 226-243. DOI: 10.1037/0096-3445.137.2.226.
  • Batson, J. D., & Batsell, W. R. Jr. (2000). Augmentation, not blocking, in an A+/AX+ flavor-conditioning procedure. Psychonomic Bulletin & Review, 7, 466-471. DOI: 10.3758/BF03214358
  • Blanco, M. J. (2000). Psicofísica. Madrid: Universitas. Blough, D. S. (1967). Stimulus generalization as signal detection in pigeons. Science, 158, 940-941. DOI: 10.1126/science.158.3803.940
  • Boneau, C. A., & Cole, J.L. (1967). Decision theory, the pigeon and the psychophysical function. Psychological Review, 74, 123-135. DOI: 10.1037/h0024287
  • Boynton, D. M., Smith, L. D., & Stubbs, D. A. (1997). Sensitivity and bias in covariation detection: A direct approach to a tangled issue. Organizational Behavior and Human Decision Processes, 72, 79-98. DOI: 10.1006/obhd.1997.2731
  • Carnero, S. (2011). Percepción de la contingencia en el condicionamiento pavloviano desde una perspectiva psicofísica. (Tesis doctoral inédita). Departamento de Psicología. Universidad de Oviedo.
  • Carnero, S., Morís, J., Acebes, F., & Loy, I. (2009). Percepción de la contingencia en ratas: modulación fechneriana y metodología de la detección de señales. Revista Electrónica de Metodología Aplicada, 14, 14-37.
  • Dickinson, A., Shanks, D. R., & Evenden, J. (1984). Judgment of act-outcome contingency: The role of selective attribution. Quarterly Journal of Experimental Psychology, 36A, 29–50. DOI: 10.1080/14640748408401502
  • Domjan, M. (2009). Principios de aprendizaje y conducta. Madrid: Thomson Green, D.M. y Swets, J.A. (1973). Signal detection theory and psychophysics. New York: Wiley.
  • Grice, G.R. (1972). Conditioning and decision theory of response evocation. En Bower G. H. y Spence K. W. (Eds.), The Psychology of Learning and Motivation (pp. 2-63). New York: Academic Press.
  • Hack, M. H. (1963). Signal detection in the rat. Science, 139, 758-759. DOI: 10.1126/science.139.3556.758
  • Hirsch, K. A. (1979). Signal detection analysis of conditioning data. The Journal of General Psychology, 101, 249-258. DOI: 10.1080/00221309.1979.9920078
  • Kamin, L. J. (1969). Predictability, surprise, attention, and condition-ing. In B. A. Campbell & R. M. Church (Eds.), Punishment and aversive behavior (pp. 279296). New York: Appleton-Century-Crofts.
  • Mackintosh, N. J. (1983). Conditioning and associative learning. New York: Oxford University Press. Trad. cast. de M.V. Chamizo: Condicionamiento y aprendizaje asociativo. Madrid: Alhambra, 1987.
  • Mason, C. R., Idrobo, F., Early, S. J., Abibi, A., Zheng, L., Harrison, J. M., & Carney, L. H. (2003). CS-dependent response probability in an auditory maskeddetection task: Considerations based on models of Pavlovian conditioning. The Quarterly Journal of Experimental Psychology, 56B, 2, 193-205. DOI: 10.1080/02724990244000052
  • Miller, R.R., & Matute, H. (1996). Biological significance in forward and backward blocking: Resolution of a discrepancy between animal conditioning and human causal judgment. Journal of Experimental Psychology: General 125, 370-386. DOI: 10.1037/0096-3445.125.4.370
  • Miller, R. R. (2006). Challenges facing contemporary associative approaches acquired behavior. Comparative Cognition & Behavior Reviews, 1, 77-93. DOI: 10.3819/ccbr. 2008.10005.
  • Morrison, G. R., & Norrison, W. (1966). Taste detection in the rat. Canadian Journal of Psychological Review, 20, 208-217. DOI : 10.1037/h0082938.
  • Muñiz-Díez, C., Álvarez, B. y Loy, I. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64-99). New York: Appleton-CenturyCrofts.
  • Nevin, J. A. (1964). A method for the determination of psychophysical function in the rat. Journal of Experimental Analysis of Behavior, 7, 169.
  • Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 94, 61-73. DOI: 10.1037/0033-295X.94.1.61
  • Pearce, J. M., & Bouton, M. E. (2001). Theories of associative learning in animals. Annual review of psychology, 52, 111-139. DOI: 10.1146/annurev.psych.52.1.111
  • Perales, J.C., Catena, A., Shanks, D. R., & González, J.A. (2005). Dissociation between judgments and outcome-expectancy measures in covariation learning: A signal detection theory approach. Journal of Experimental Psychology: Learning, Memory and Cognition, 31, 1105-1120. DOI: 10.1037/0278-7393.31.5.1105
  • Schmajuk, N. A. (1987). Classical conditioning, signal detection and evolution. Behavioural Processes, 14, 277-289. DOI: 10.1016/0376-6357(87)90074-X.
  • Siegel, S., Allan, L. G., Hannah, S. D., & Crump, M. J. C. (2009). Applying signal detection theory to contingency assessment. Comparative Cognition & Behavior Reviews, 4, 116-134. DOI: 10.3819/ccbr.2009.40012.
  • Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application to a theory. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning (pp. 301-336). London: Academic Press.
  • Wheeler, D.S., & Miller, R.R. (2008). Determinants of cue interactions. Behavioural Processes, 78, 191-203. DOI:10.1016/j.beproc.2008.02.002
  • Yin, H., Barnet R. C., & Miller, R. R. (1994). Second-order conditioning and Pavlovian conditioned inhibition: Operational similarities and differences. Journal of Experimental Psychlogy: Animal Behavior Processes, 20, 419-428. DOI:10.1037/0097-7403.20.4.419