Applications of the stochastic frontier approach in the analysis of energy issues

  1. Filippini, Massimo 1
  2. Orea Sánchez, Luis 2
  1. 1 LUdeS University
    info

    LUdeS University

    Lugano, Suiza

    ROR https://ror.org/04880yb19

  2. 2 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Economics and Business Letters

ISSN: 2254-4380

Año de publicación: 2014

Volumen: 3

Número: 1

Páginas: 35-42

Tipo: Artículo

DOI: 10.17811/EBL.3.1.2014.35-42 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Economics and Business Letters

Objetivos de desarrollo sostenible

Referencias bibliográficas

  • Agrell, P. and Bogetoft, P. (2007) Development of benchmarking models for German electricity and gas distribution, Project GERNER-Final report, SUMICSID, 2007-01- 01.
  • Agrell, P.J., Farsi, M., Filippini, M. and Koller, M. (2013) Unobserved heterogeneous effects in the cost efficiency analysis of electricity distribution systems, CER-ETH Economics working papers series 13/171, CER-ETH Center of Economic Research (CER-ETH) at ETH Zurich.
  • Alberini, A. and Filippini, M. (2011) Response of residential electricity demand to price: the effect of measurement error, Energy Economics, 33(5), 889–895.
  • Álvarez, A., Amsler, C., Orea, L., and Schmidt, P. (2006) Interpreting and testing the scaling property in models where inefficiency depends on firm characteristics, Journal of Productivity Analysis, 25, 201-212.
  • Coelli, T., Gautier, A., Perelman, S. and Saplacan-Pop, R. (2013) Estimating the cost of improving quality in electricity distribution: a parametric distance function approach, Energy Policy, 53, 287–329.
  • Cossent, R. (2013) Economic regulation of distribution system operators and its adaptation to the penetration of distributed energy resources and smart grid technologies, PhD project, Escuela Técnica Superior de Ingeniería (ICAI), mimeo.
  • Dai, X. and Kuosmanen, T. (2013) Best-practice benchmarking using clustering methods: application to energy regulation, Omega, 42, 179–218.
  • Farsi, M. and Filippini, M. (2004) Regulation and measuring cost efficiency with panel data models application to electricity distribution utilities, Review of Industrial Organization, 25(1), 1-19.
  • Farsi, M. and Filippini, M. (2009) Efficiency measurement in the electricity and gas distribution sectors, in Evans, J. and Hunt, L.C. (eds.): International Handbook on the Economics of Energy, Edward Elgar, Cheltenham, 598-623.
  • Farsi, M., Filippini, M. and Greene, W. (2005) Efficiency measurement in network industries: Application to the Swiss railway companies, Journal of Regulatory Economics, 28, 69-90.
  • Farsi, M., M. Filippini and W. H. Greene (2006) Application of panel data models in benchmarking analysis of the electricity distribution sector, Annals of Public and Cooperative Economics, 77(3), 271-290.
  • Filippini, M. and Hunt, L. (2011) Energy demand and energy efficiency in the OECD countries: A stochastic demand frontier approach, Energy Journal, 32(2), 59-80.
  • Filippini, M. and Hunt, L. (2012) US residential energy demand and energy efficiency: A stochastic demand frontier approach, Energy Economics, 34, 1484-1491.
  • Filippini, M. and Hunt, L. (2013) Underlying energy efficiency’ in the US, CER-ETH Economics Working Paper Series 13/181.
  • Flaig, G. (1990) Household production and the short-and long-run demand for electricity, Energy Economics, 12(2), 116–121.
  • Greene, W.H. (2005) Reconsidering heterogeneity in panel data estimators of the stochastic frontier model, Journal of Econometrics, 126, 269-303.
  • Greene, W.H. (2008) The econometric approach to efficiency analysis, in H.O. Fried, C.A.K. Lovell and S.S. Schmidt (eds.): The measurement of productive efficiency and productivity growth, Oxford University Press, 92–250.
  • Growitsch, C., Jamasb, T. and Wetzel, H. (2012) Efficiency effects of observed and unobserved heterogeneity: Evidence from Norwegian electricity distribution networks, Energy Economics, 34, 542–548.
  • Haney, A.B. and Pollitt, M. (2009) Efficiency analysis of energy networks: An international survey of regulators, Energy Policy, 37(12), 5814–5830.
  • Hu, J. and Wang, S. (2006) Total-factor energy efficiency of regions in China, Energy Policy, 34, 3206-3217.
  • Jamasb, T., Orea, L. and Pollitt, M. (2012) Estimating marginal cost of quality improvements: The case of the UK electricity distribution companies, Energy Economics, 34, 1498–1506.
  • Kumbhakar, S. (1990) Production frontiers, panel data, and time-varying technical efficiency, Journal of Econometrics, 46, 201–211.
  • Llorca, M., Orea, L. and Pollitt, M. (2014) Using the latent class approach to cluster firms in benchmarking: an application to the US electricity transmission industry, Operations Research Perspectives, 1(1), 6-17.
  • Mundlak, Y. (1978) On the pooling of time series and cross section data, Econometrica, 64, 69-85.
  • Orea, L., Growitsch, C. and Jamasb, T. (2012) Using supervised environmental composites in production and efficiency analyses: An application to Norwegian electricity networks, EWI Working Paper 12/18, Institute of Energy Economics, University of Cologne.
  • Orea, L., Llorca, M. and Filippini, M. (2014) Measuring energy efficiency and rebound effects using a stochastic demand frontier approach: the US residential demand for energy, Efficiency Series Paper 01/2014, Oviedo Efficiency Group, Department of Economics, University of Oviedo.
  • Po, R., Guh, Y. and Yang, M. (2009) A new clustering approach using data envelopment analysis, European Journal of Operational Research, 199, 276-284.
  • Saunders, H. (2000) A view from the macro side: Rebound, backfire and Khazzoom–Brookes, Energy Policy, 28 (6–7), 439–449.
  • Saunders, H. (2008) Fuel conserving (and using) production functions, Energy Economics, 30(5), 2184-2235.
  • Sorrell, S. and Dimitriopolous, J. (2008) The rebound effect: microeconomic definitions, limitations and extensions, Ecological Economics, 65(3), 636-649.
  • Wei, C., Ni, J. and Shen, M. (2009) Empirical analysis of provincial energy efficiency in China, China and World Economy, 17(5), 88-103.
  • Yu, W., Jamasb, T. and Pollitt, M. (2009) Does weather explain cost and quality performance? An analysis of UK electricity distribution companies, Energy Policy, 37(11), 4177-4188.