Improving basic math skills through integrated dynamic representation strategies

  1. González Castro, Paloma 1
  2. Fernández Cueli, Marisol 1
  3. Cabeza Soberón, Lourdes 1
  4. Álvarez García, David 1
  5. Rodríguez Pérez, Celestino 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Psicothema

ISSN: 0214-9915

Año de publicación: 2014

Volumen: 26

Número: 3

Páginas: 378-384

Tipo: Artículo

Otras publicaciones en: Psicothema

Resumen

Antecedentes: con este trabajo se pretende analizar la eficacia de la estrategia Representación Dinámica Integrada (RDI) para desarrollar las competencias matemáticas básicas. Método: participaron en el estudio 72 estudiantes, de edades comprendidas entre los 6 y los 8 años. Se comparó el desarrollo de competencias básicas informales (numeración, comparación, cálculo informal y conceptos informales) y formales (convencionalismos, hechos numéricos, cálculo formal y conceptos formales) en un grupo experimental (n = 35) al que se aplicó la RDI y un grupo control (n = 37) con el fin de identificar el impacto de la intervención. Resultados: el grupo experimental mejora significativamente más que el grupo control en todas las variables evaluadas, excepto en hechos numéricos y cálculo formal. Conclusiones: se puede concluir, por tanto, que la RDI favorece en mayor medida el desarrollo de las competencias más relacionadas con la matemática aplicada que las relacionadas con la matemática de los automatismos y del cálculo mental.

Referencias bibliográficas

  • American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders-text revision (4th ed.). Washington, DC: Author.
  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241.
  • Aguilar, M., Navarro, J.I., & Alcalde, C. (2007). The use of figurative schemas to help solve arithmetic problems. Cultura y Educación, 15(4), 385-397.
  • Álvarez, L., González-Castro, P., Núñez, J.C., & González-Pienda, J.A. (2007). Prácticas de Psicología de la Educación [Practicums in Educational Psychology: Assessment and psychoeducational intervention]. Madrid: Pirámide.
  • Argibay, J.C. (2009). Sample in quantitative research. Subjetividad y Procesos Cognitivos, 13(1), 13-29.
  • Azevedo, R., & Jacobson, J. (2008). Advances in scaffolding learning with hypertext and hypermedia: A summary and critical analysis. Education Technology Research and Development, 56(1), 93-100.
  • Bravo, M., Ribera, J., Rubio-Stipec, M., Canino, G., Shorout, P., Ramírez, R., et al. (2001). Test-retest reliability of the spanish version of the diagnostic interview schedule for children (DISC-IV). Journal of Abnormal Child Psychology, 29, 433-444.
  • Canino, G., Shrout, P.E., Rubio-Stipec, M., Bird, H. R., Bravo, M., Ramírez, R., et al. (2004). The DSM-IV rates of child and adolescent disorders in Puerto Rico. Prevalence, correlates, service use, and the effects of impairment. Archives of General Psychiatry, 61(1), 85-93.
  • Corral, S., Arribas, D., Santamaría, P., Sueiro, M.J., & Pereña, J. (2005). Escala de inteligencia de Weschler para niños WISC-IV (adapted into spanish) [The Wechsler Intelligence Scale for Children-4th edition]. Madrid: TEA Ediciones.
  • Cueli, M., García, T., & González-Castro, P. (2013). Self-regulation and academic achievement in mathematics. Aula abierta, 41(1), 39-48.
  • Delen, E., & Bulut, O. (2011). The relationship between students' exposure to technology and their achievement in science and math. Turkish Online Journal of Educational Technology, 10(3), 311-317.
  • Friege, G., & Lind, G. (2006). Types and qualities of knowledge and their relation to problem solving in physics. International Journal of Science and Mathematics Education, 4, 437-465.
  • García, T., & González-Pienda, J.A. (2012). Assessment of the selfregulated learning process in the area of mathematics using digital blackboards. In J. Dulac-Ibergallartu & C. Alconada-Fernández (Eds.), 3rd Digital Blackboard Congress: Publication of Communications (pp. 85-92). Madrid: Ediciones Pizarratic.
  • Gil, M.D., & Vicent, C. (2009). Comparative analysis of the efficacy of a playful-narrative program to teach mathematics at pre-school level. Psicothema, 21(1), 70-75.
  • Ginsburg, H.P., & Baroody, A.J. (2003). The Test of Early Mathematics Ability (3rd ed.). Austin, TX: Pro Ed.
  • Hirvonen, R., Tolvanen, A., Aunola, K., & Nurmi, J.E. (2012). The developmental dynamics of task-avoidant behavior and math performance in kindergarten and elementary school. Learning and Individual Differences, 22, 715-723.
  • International Association for the Evaluation of Educational Achievement IEA (2011). Results of the 2011 PIRLS and TIMSS tests in Spain. Madrid: Ministerio de Educación, Cultura y Deporte.
  • Jacobse, A.E., & Harskamp, E.G. (2009). Student-controlled metacognitive training for solving word problems in primary school mathematics. Educational Research & Evaluation, 15(5), 447-463.
  • Jitendra, A.K., Rodríguez, M., Kanive, R., Huang, J.P., Church, C., Corroy, K.A.Z., et al. (2013). Impact of small-group tutoring interventions on the mathematical problem solving and achievement of third-grade students with mathematics difficulties. Learning Disability Quarterly 36(1), 21-35.
  • Jonassen, D.H. (2003). Designing research-based instruction for story problems. Educational Psychology Review, 15(3), 267-295.
  • Mayer, R.E. (2001). Multimedia learning. Cambridge, UK: Cambridge University Press.
  • Miranda, A., Meliá, A., & Marco, R. (2009). Mathematical abilities and executive function in children with attention deficit hyperactivity disorder and learning disabilities in mathematics. Psicothema, 21(1), 63-69.
  • Montague, M., Enders, C., & Dietz, S. (2011). Effects of cognitive strategy instruction on math problem solving of middle school students with learning disabilities. Learning Disability Quarterly, 34(4), 262-272.
  • National Mathematics Advisory Panel (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, D.C.: US Department of Education.
  • Nicoleta, S. (2011). How can technology improve math learning process? Teachers for the Knowledge Society, 11, 170-174.
  • Núñez, M.C., & Lozano, I. (2010). TEMA-3 Test de Competencia Matemática Básica 3 (adaptación al español) [TEMA-3 The Test of Early Mathematics Ability 3]. Madrid: TEA Ediciones.
  • OECD (2010). PISA 2009 Results. Paris: OECD.
  • Olkun, S., Altun, A., & Deryakulu, D. (2009). Development and evaluation of a case-based digital learning tool about children's mathematical thinking for elementary school teachers. European Journal of Teacher Education, 32(2), 151-165.
  • Orrantia, J. (2003). El rol del conocimiento conceptual en la resolución de problemas aritméticos con estructura aditiva [The role of conceptual knowledge in solving addition and subtraction word problems]. Infancia y Aprendizaje, 26(4), 451-468.
  • Orrantia, J., Múñez, D., Fernández, M., & Matilla, L. (2012). Solving arithmetic problems: Conceptual knowledge and level of competence in mathematics. Aula Abierta, 40(3), 23-32.
  • Seethaler, P.M., & Fuchs, L.S. (2006). The cognitive correlates of computational estimation skill among third-grade students. Learning Disabilities Research y Practice, 21(4), 233-243.
  • Shaffer, D., Fisher, P., Lucas, C.P., Dulcan, M.K., & Schwab-Stone, M.E. (2000). Diagnostic Interview Schedule for Children - Version IV (NIMH DISC-IV): Description, differences from previous versions and reliability of some common diagnoses. Journal of the American Academy of Child and Adolescent Psychiatry, 39(1), 28-38.
  • Shin, N., Sutherland, L.M., Norris, C.A., & Soloway, E. (2012). Effects of game technology on elementary student learning in mathematics. British Journal of Educational Technology, 43(4), 540-560.
  • Solaz-Portolés, J.J., & Sanjosé-López, V.S. (2008). Knowledge and cognitive in problem-solving processes in sciences: Consequences for teaching. Magis, Revista Internacional de Investigación en Educación, 1, 147-162.
  • Timoneda, C., Pérez, F., Mayoral, S., & Serra, M. (2013). Diagnosis of reading and writing difficulties and of dyslexia based on the PASS Theory of Intelligence and using the DN-CAS battery: Cognitive origin of dyslexia. Aula Abierta, 41(1), 5-16.
  • Vicente, S., Orrantia, J., & Verschaffel, L. (2008). Infl uence of mathematical and situational knowledge in solving verbal arithmetic problems: Textual and graphic aids. Infancia y Aprendizaje, 31(4), 463-483.
  • Walker, A., Recker, M., Ye, L., Robertshaw, M.B., Sellers, L., & Leary, H. (2012). Comparing technology-related teacher professional development designs: A multilevel study of teacher and student impacts. Educational Technology Research and Development, 60(3), 421-444.
  • Wechsler, D. (2005). The Wechsler Intelligence Scale for Children- 4th edition. London: Pearson Assessment.
  • Zimmerman, B.J. (2008). Investigating self-regulation and motivation: Historical, background, methodological developments, and future prospects. American Educational Research Journal, 45, 166-183.