Effects of aromatase inhibition on spatial working memory and hippocampal astrocyte numbers

  1. Conejo Jiménez, Nélida María 1
  2. González Pardo, Héctor 1
  3. Arias, José Ignacio
  4. Arias Pérez, Jorge Luis 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Revista iberoamericana de psicología y salud

ISSN: 2171-2069

Año de publicación: 2012

Volumen: 3

Número: 1

Páginas: 1-18

Tipo: Artículo

Otras publicaciones en: Revista iberoamericana de psicología y salud

Resumen

Se sabe que las hormonas sexuales inducen la diferenciación sexual del cerebro durante el desarrollo temprano en mamíferos. La testosterona secretada por los machos ya durante la gestación está tradicionalmente asociada con la diferenciación sexual cerebral y conductual, gracias a su conversión a estradiol por el enzima aromatasa. Sin embargo, hay evidencia de que la inhibición de la aromatasa puede también deteriorar las funciones cognitivas en mujeres que reciben tratamiento hormonal para el cáncer de mama. Con el fin de estudiar los efectos de la aromatasa en el cerebro y la conducta, ratas prepúberes macho y hembra tratadas prenatalmente con anastrozol y durante el desarrollo temprano fueron evaluadas en una prueba de memoria de trabajo espacial. Los resultados muestran que el tratamiento con anastrozol deterioró claramente la memoria de trabajo en machos y hembras en comparación con grupos tratados con vehículo y control. Además, el número de astrocitos que expresaron la proteína glial fibrilar ácida (GFAP) disminuyó en el área CA3 del hipocampo dorsal sólo en ratas macho. Estos resultados indican que la aromatasa juega un papel complejo en la diferenciación sexual del cerebro y afecta a la memoria espacial en machos y hembras.

Referencias bibliográficas

  • Alejandre-Gomez, M., Garcia-Segura, L. M., & Gonzalez-Burgos, I. (2007). Administration of an inhibitor of estrogen biosynthesis facilitates working memory acquisition in male rats. Neuroscience Research, 58, 272-277
  • Aydin, M., Yilmaz, B., Alcin, E., Nedzvetsky, V.S., Sahin, Z., & Tuzcu, M. (2008). Effects of letrozole on hippocampal and cortical catecholaminergic neurotransmitter levels, neural cell adhesion molecule expression and spatial learning and memory in female rats. Neuroscience, 151, 186-194.
  • Azcoitia, I., Santos-Galindo, M., Arevalo, M. A., & Garcia-Segura, L. M. (2010). Role of astroglia in the neuroplastic and neuroprotective actions of estradiol. European Journal of Neuroscience, 32, 1995-2002.
  • Bale, T. L. (2006). Stress sensitivity and the development of affective disorders. Hormones & Behavior, 50, 529-533.
  • Bender, C. M., Sereika, S. M., Brufsky, A. M., Ryan, C. M., Vogel, V.G., Rastogi, P., Cohen, S. M., Casillo, F. E., & Berga, S. L. (2007). Memory impairments with adjuvant anastrozole versus tamoxifen in women with early-stage breast cancer. Menopause, 14, 995-998.
  • Bird, C. M., & Burgess, N. (2008). The hippocampus and memory: Insights from spatial processing. Nature Review in Neuroscience, 9, 182-194.
  • Boon, W. C., Chow, J. D., & Simpson, E. R. (2010). The multiple roles of estrogens and the enzyme aromatase. Progress in Brain Research, 181, 209-232.
  • Brunton, P. J., & Russell, J. A. (2010). Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: Sexspecific effects. Journal of Neuroendocrinology, 22, 258-271.
  • Chowen, J. A., Busiguina, S., & Garcia-Segura, L. M. (1995). Sexual dimorphism and sex steroid modulation of glial fibrillary acidic protein messenger RNA and immunoreactivity levels in the rat hypothalamus. Neuroscience, 69, 519-532.
  • Colciago, A., Celotti, F., Pravettoni, A., Mornati, O., Martini, L., & Negri-Cesi, P. (2005). Dimorphic expression of testosterone metabolizing enzymes in the hypothalamic area of developing rats. Brain Research Developmental Brain Research, 155, 107-116.
  • Collins, B., Mackenzie, J., Stewart, A., Bielajew, C., & Verma, S. (2009). Cognitive effects of hormonal therapy in early stage breast cancer patients: A prospective study. Psychooncology, 18, 811-821.
  • Conejo, N. M., González-Pardo, H., Cimadevilla, J. M., Argüelles, J. A., Díaz, F., Vallejo-Seco, G., & Arias J. L. (2005). Influence of gonadal steroids on the glial fibrillary acidic protein-immunoreactive astrocyte population in young rat hippocampus. Neuroscience Research, 79, 488-494. Conejo, N. M., González-Pardo, H., Vallejo, G., & Arias, J. L. (2004). Involvement of the mammillary bodies in spatial working memory revealed by cytochrome oxidase activity. Brain Research, 1011, 107-114
  • Day, J. R., Laping, N. J., Lampert-Etchells, M., Brown, S. A., O'Callaghan, J. P., McNeill, T. H., & Finch, C. E. (1993). Gonadal steroids regulate the expression of glial fibrillary acidic protein in the adult male rat hippocampus. Neuroscience, 55, 435-443.
  • Day, J. R., Laping, N. J., McNeill, T. H., Schreiber, S. S., Pasinetti, G., & Finch, C. E. (1990). Castration enhances expression of glial fibrillary acidic protein and sulfated glycoprotein-2 in the intact and lesion-altered hippocampus of the adult male rat. Molecular Endocrinology, 4:1995–2002.
  • Del Cerro, S., Garcia-Estrada, J., & Garcia-Segura, L. M. (1995). Neuroactive steroids regulate astroglia morphology in hippocampal cultures from adult rats. Glia 14, 65–71.
  • Forgie, M. L., & Kolb, B. (2003). Manipulation of gonadal hormones in neonatal rats alters the morphological response of cortical neurons to brain injury in adulthood. Behavioral Neuroscience, 117, 257-262.
  • Garcia-Segura, L. M., Chowen, J. A., Dueñas, M., Parducz, A., & Naftolin, F. (1996). Gonadal steroids and astroglial plasticity. Cellular and Molecular Neurobiology, 16, 225-237.
  • Garcia-Segura, L. M., Naftolin, F., Hutchison, J. B., Azcoitia, I., & Chowen, J. A. (1999). Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. Journal of Neurobiology, 40, 574-584.
  • Garcia-Segura, L. M., Wozniak, A., Azcoitia, I., Rodriguez, J. R., Hutchison, R. E., & Hutchison, J. B. (1999). Aromatase expression by astrocytes after brain injury: Implications for local estrogen formation in brain repair. Neuroscience, 89, 567- 578.
  • Gilbert, P. E., & Kesner, R. P. (2006). The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behavioral Brain Research, 169, 142-149.
  • Goldstein, J. M. (2006). Sex, hormones and affective arousal circuitry dysfunction in schizophrenia. Hormones and Behavior, 50, 612-622.
  • Gorski, R. A. (1989). Structural sex differences in the brain: Their origin and significance. In Lakoski J. M., Perez-Polo J. R., & Rassin D. K. (Eds.), Neural control of reproductive function (pp. 33-449). New York: Alan R. Liss.
  • Gundersen, H. J., & Jensen, E. B. (1987). The efficiency of systematic sampling in stereology and its prediction. Journal of Microscopy, 147, 229-263.
  • Gundersen, H.J., Bagger, P., Bendtsen, T.F., Evans, S.M., Korbo, L., Marcussen, N., Møller, A., Nielsen, K., Nyengaard, J.R., & Pakkenberg, B. (1988). The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 96, 857-881.
  • Hansen, S., Södersten, P., Eneroth, P., Srebro, B., & Hole, K. (1979). A sexually dimorphic rhythm in oestradiol-activated lordosis behaviour in the rat. Journal of Endocrinology, 83, 267-274.
  • Healy, S. D., Braham, S. R., & Braithwaite, V. A. (1999). Spatial working memory in rats: No differences between the sexes. Proceedings of the Royal Society B: Biological Sciences, 22, 2303–2308
  • Isgor, C., & Sengelaub, D. R. (1998). Prenatal gonadal steroids affect adult spatial behavior, CA1 and CA3 pyramidal cell morphology in rats. Hormones & Behavior, 34, 83-198.
  • Isgor, C., & Sengelaub, D. R. (2003). Effects of neonatal gonadal steroids on adult CA3 pyramidal neuron dendritic morphology and spatial memory in rats. Journal of Neurobiology, 55, 179-190.
  • Jenkins, V. A., Ambroisine, L. M., Atkins,. L., Cuzick, J., Howell, A., & Fallowfield, L. J. (2008). Effects of anastrozole on cognitive performance in postmenopausal women: A randomised, double-blind chemoprevention trial (IBIS II). Lancet Oncology, 9, 953-961.
  • Kesner, R. P. (2007). Behavioral functions of the CA3 subregion of the hippocampus. Learn Memory, 14, 771-781.
  • Konkle, A. T., & McCarthy, M. M. (2011). Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology, 152, 223-235.
  • Lejbak, L., Vrbancic, M., & Crossley, M. (2010). Endocrine therapy is associated with low performance on some estrogen-sensitive cognitive tasks in postmenopausal women with breast cancer. Journal of Clinical and Experimental Neuropsychology, 32, 836-846.
  • Levine, S. (2002). Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: The role of maternal behavior. Neurotoxicity Research, 4, 557-564.
  • MacLusky, N. J., & Naftolin, F. (1981). Sexual differentiation of the central nervous system. Science. 211, 1294-1303.
  • Martin, S., Jones, M., Simpson, E., & van den Buuse, M. (2003). Impaired spatial reference memory in aromatase-deficient (ArKO) mice. Neuroreport, 14, 1979- 1982.
  • McEwen, B. S. (1983). Gonadal steroid influences on brain development and sexual differentiation. International Review of Physiology, 27, 99-145.
  • McEwen, B. S. (1999). Permanence of brain sex differences and structural plasticity of the adult brain. Proceedings of the National Academy of Sciences, 96, 7128-7130.
  • Mong, J. A., & McCarthy, M. M. (1999). Steroid-induced developmental plasticity in hypothalamic astrocytes: Implications for synaptic patterning. Journal of Neurobiology, 40, 602-619.
  • Moradpour, F., Naghdi, N., & Fathollahi, Y. (2006). Anastrozole improved testosterone-induced impairment acquisition of spatial learning and memory in the hippocampal CA1 region in adult male rats. Behavioural Brain Research, 175, 223-232.
  • Moser, M. B., Moser, E. I., Forrest, E., Andersen, P., & Morris, R. G. M. (1995). Spatial learning with a minislab in the dorsal hippocampus. Proceedings of the National Academy of Sciences USA, 92, 9697-9701.
  • Nichols, N. R., Agolley, D., Zieba, M., & Bye, N. (2005). Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration. Brain Research Review, 48, 287-301.
  • Pilgrim, C., & Hutchison, J. B. (1994). Developmental regulation of sex differences in the brain: Can the role of gonadal steroids be redefined? Neuroscience, 60, 843- 855.
  • Rune, G. M., & Frotscher, M. (2005). Neurosteroid synthesis in the hippocampus: Role in synaptic plasticity. Neuroscience, 136, 833-842.
  • Smith, M. D., Jones. L. S., & Wilson, M. A. (2002). Sex differences in hippocampal slice excitability: Role of testosterone. Neuroscience, 109, 517-530.
  • Stoffel-Wagner, B. (2001). Neurosteroid metabolism in the human brain. European Journal of Endocrinology, 145, 669-679.
  • Syková, E. (2001). Glial diffusion barriers during aging and pathological states. Progress in Brain Research, 132, 339-363.
  • Theodosis DT. (2002). Oxytocin-secreting neurons: a physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol, 23, 101–135.
  • Weinstock, M. (2007). Gender differences in the effects of prenatal stress on brain development and behaviour. Neurochemistry Research, 32, 1730-1740.
  • West, M. J. (1993). New stereological methods for counting neurons. Neurobiology of Aging, 14, 275-285. West, M. J., Slomianka, L., & Gundersen, H. J. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anatomical Record, 231, 482-497.
  • Zhou, L., Fester, L., von Blittersdorff, B., Hassu, B., Nogens, H., Prange-Kiel, J., Jarry, H., Wegscheider, K., & Rune, G. M. (2010). Aromatase inhibitors induce spine synapse loss in the hippocampus of ovariectomized mice. Endocrinology, 151, 1153-1160.