Los efectos de terceras variables en la investigación psicológica
- Ato García, Manuel
- Vallejo Seco, Guillermo 1
-
1
Universidad de Oviedo
info
ISSN: 0212-9728, 1695-2294
Año de publicación: 2011
Volumen: 27
Número: 2
Páginas: 550-561
Tipo: Artículo
Otras publicaciones en: Anales de psicología
Resumen
Given a causal relationship between an independent variable (X) and a response variable (Y), the interest of some applied researchers is sometimes focused on knowing the role playing for alternative intervening variables (third variables or Z-variables), and particularly the role of me-diating and moderating variables. Some influential works have repeatedly denounced that in applied psychology some confusion exists with respect to the meaning and appropriate use of third variables effects as causal hypotheses. This work is intended to reinforce the comprehension and using of five of more known effects of third variables and concretely the effects of covariation, spuriousness or confounding, suppression, and particularly of mediation and moderation, with special attention towards the application of statistical tests and the report of most common mis-takes that usually appear when we tackle a causal analysis. An accessible language for applied researcher with path diagrams is used. A flow dia-gram is finally proposed in order to help applied researchers to distinguish between third variable effects and to make easier the application of the appropriate statistical procedures.
Referencias bibliográficas
- Aguinis, H. (2003). Regression Analysis for Categorical Moderators. New York: Guilford Press.
- Aiken, L.S. y West, S.G. (1991). Multiple regression: testing and interpreting interactions. Newbury Park, CA: Sage.
- Ato, M. y Vallejo, G. (2007). Diseños Experimentales en Psicología. Madrid: Pirámide.
- Baron, R.M. y Kenny, D. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182.
- Bauer, D.J. y Curran, P.J. (2005). Probing interactions in fixed and multilevel regression: inferential and graphical techniques. Multivariate Behavioral Research, 40, 373-400.
- Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley.
- Chaplin, W.F. (2007). Moderator and mediator models in personality research: a basic introduction. En R.W. Robins, R.C. Fraley y R.F. Krueger (Eds): Handbook of Research Methods in Personality Psychology, pp. 602-630. New York: Guilford Press.
- Cheung, M.W. (2009). Comparison of methods for constructing confidence intervals of standardized indirect effects. Behavior Research Methods, 41, 425-438.
- Cheung, G.W. y Lau, R.S. (2008). Testing mediation and suppression effects of latent variables: bootstrapping with structural equation models. Organizational Research Methods, 11, 296-325.
- Cohen, J. y Cohen, P. (1983). Applied multiple regression/correlation for the behavioral sciences. 2nd Ed. Hillsdale, NJ: Lawrence Erlbaum.
- Cohen, J., Cohen, P., West, S.G. y Aiken, L.S. (2003). Applied multiple regression correlation analysis for the behavioral sciences. 3rd Ed. Mahwah: Lawrence Erlbaum.
- Collins, L.M., Graham, J.W. y Flaherty, B.P. (1998). An alternative frame-work for defining mediation. Multivariate Behavioral Research, 33, 295-312.
- Conger, A.J. (1974). A revised definition for suppressor variables: a guide to their identification and interpretation. Educational and Psychological Measurement, 34, 35-46.
- Echambadi, R. y Hess, J.D. (2007). Mean-centering does not alleviate collinearity problems in moderate multiple regression models. Marketing Science, 26, 438-445.
- Edwards, J.R. y Lambert, L.S. (2007). Methods for integrating moderation and mediation: a general analytical framework using moderated path analysis. Psychological Methods, 12, 1-22.
- Estévez, A. y Calvete, E. (2009). Mediación a través de pensamientos automáticos de la relación entre esquemas y síntomas de depresión. Anales de Psicología, 25, 27-35.
- Fairchild, A.J. y MacKinnon, D.P. (2009). A general model for testing mediation and moderation effects. Prevention Science, 10, 87-99.
- Fritz, M.S. y MacKinnon, D.P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18, 233-239.
- Frazier, P.A.; Tix, A.P. y Barron, K.E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of Counseling Psychology, 51, 115-134.
- Greenland, S. (2000). Causal analysis in the health sciences. Journal of the American Statistical Association, 95, 286-289.
- Greenland, S. y Morgenstern, H. (2001). Confounding in health research. Annual Review of Public Health, 22, 189-212.
- Holmbeck, G.N. (1997). Toward terminological, conceptual and statistical clarity in the study of mediadors and moderators: examples from the child-clinical and pediatric psychology literatures. Journal of Consulting and Clinical Psychology, 65, 599-610.
- Horst, P. (1941). A role of predictor variables which are independent of the criterion. Social Science Research Bulletin, 48, 431-436.
- Iacobucci, D. (2008). Mediation analysis. Thousand Oaks, CA: Sage.
- Iacobucci, D.; Saldanha, N. Y Deng, X. (2007). A meditation on mediation: evidence that structural equations models perform better than regressions. Journal of Consumer Psychology, 17, 140-154.
- Jaccard, J. y Turrisi, R. (2003). Interaction effects in multiple regression (2nd ed.) Thousand Oaks, CA: Sage.
- James, L.R. y Brett, J.M. (1984). Mediators, moderators and test for mediation. Journal of Applied Psychology, 69, 307-321.
- James, L.R., Mulaik, S.A. y Brett, J.M. (2006). A tale of two methods. Organizational Research Methods, 9, 233-244.
- Jandasek, B., Holmbeck, G.N. y Rose, B.M. (2008). Statistical considerations: moderators and mediators. En M. Hersen y A.W. Grow (Eds.): Handbook of Clinical Psychology. Vol 2: Children and Adolescents (pp. 391-320). New York: Wiley.
- Jiménez, T.I., Musitu, G. y Murgui, S. (2008). Funcionamiento familiar y consumo de sustancias en adolescentes: el rol mediador de la autoestima. International Journal of Clinical and Health Psychology, 8, 139-151.
- Judd, C.M. y Kenny, D. (1981). Process analysis: estimating mediation in treatment evaluations. Evaluation Review, 5, 602-619.
- Judd, C.M. y Kenny, D. (2010). Data analysis in social psychology: recent and recurrent issues. En S.T. Fiske, D.T. Gilbert & G. Lindzey (Eds.): Handbook of Social Psychology, 5th Edition (pp. 115-139). New York, NY: Wiley.
- Kam, C.D. y Franzese F.J. (2007). Modeling and interpreting interactive hypotheses in regression analysis. Ann Arbor: The University of Michigan Press.
- Kenny, D. (1979). Correlation and causality. New York: Wiley.
- Kenny, D. (2008). Reflections on mediation. Organizational Research Methods, 11, 353-358.
- Kenny, D. (2009). Estimating and testing mediation. Documento recuperado el 7/6/2009 de la dirección: http://davidakenny.net/p5130/mediationsem.ppt
- Kenny, D. Kashy, D.A. y Bolger, N. (2006). Data analysis in social psychology. En D.T. Gilbert, S.T. Fiske y G. Linzey (Eds.), The Handbook of Social Psychology, 4th Ed. Vol.1, pp. 233-265. New York: Oxford University Press.
- Kraemer, H.C.; Kiernan, M.; Essex, M. y Kupfer, D.J. (2008). How and why criteria defining moderators and mediators differ between Baron & Kenny and MacArthur approaches. Health Psychology, 27, S101-108.
- Maasen, G.H. y Baker, A.B. (2001). Suppressor variables in path models: definitions and interpretations. Sociological Methods and Research, 30, 241-270.
- MacKinnon, D.P. (2008). Introduction to Statistical Mediation Analysis. New York: Lawrence Erlbaum Associates.
- MacKinnon, D.P. y Dwyer, J.H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17, 144-158.
- MacKinnon, D.P. y Luecken, L.J. (2008). How and for whom? Mediation and moderation in health psychology. Health Psychology, 27(2, supp), S99-S100.
- MacKinnon, D.P.; Fairchild, A.J. y Fritz, M.S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593-614.
- MacKinnon, D.P.; Krull, J. L y Lockwood, C.M. (2000). Equivalence of the mediation, confounding and suppression effect. Prevention Science, 1, 173-181.
- MacKinnon, D.P.; Krull, J. L y Lockwood, C.M. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83-104.
- MacKinnon, D.P., Lockwood, C.M. y Williams, J. (2004). Confidence limits for the indirect effect: distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99.128.
- MacKinnon, D.P., Warsi, G. y Dwyer, J.H. (1995). A simulation study of mediated effect measures. Multivariate Behavioral Research, 30, 41-62.
- MacKinnon, D.P., Lockwood, C.M., Hoffman, J.M., West, S.G. y Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects, Psychological Methods, 7, 83-104.
- Mallinckrodt, B., Abraham, W.T., Wei, M. y Russell, D.W. (2006). Advances in testing the statistical significance of mediation effects. Journal of Counseling Psychology, 53, 372-378.
- Meinert, C.L. (1986). Clinical trials: design, conduct and analysis. New York, NY: Oxford University Press.
- Miller, G.A. y Chapman, J.P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110, 40-48.
- Milliken, G.A. y Johnson, D.E. (2002). Analysis of messy data. III: Analysis of covariance. Boca Ratón, CA: Chapman & Hall.
- Müller, D.; Yzerbyt, V.Y. y Judd, C.M. (2008). Adjusting for a mediator in models with two crossed treatment variables. Organizational Research Methods, 11, 224.240.
- Nguyen-Rodriguez, H.T., Chou, C.; Unger, J.B. y Spruijt-Metz, D. (2008). BMI as a moderator of perceived stress and emotional eating in adolescents. Eating Behavior, 9, 238-246.
- Pearl, J. (2009a). Causality: models, reasoning and inference. 2nd Edition. New York, NY: Cambridge University Press.
- Pearl, J. (2009b). Causal inference in statistics: an overview. Statistics Surveys, 3, 96-146.
- Pearl, J. (2010a). An introduction to causal inference. International Journal of Biostatistics, 6, issue 2, article 7.
- Pearl, J. (2010b). The Mediation Formula: a guide to the assessment of causal pathways in non-linear models. UCLA Cognitive Systems Experimental Laboratory. Technical Report R-363. Documento recuperado el 3/08/2010 de la dirección: ftp://ftp.cs.ucla.edu/pub/stat_ser/r363.pdf
- Potthoff, R.F. (1964). On the Johnson-Neyman technique and some extensions thereof. Psychometrika, 29, 241-256.
- Preacher, K.J. y Hayes, A.F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments & Computers, 36, 717-731.
- Preacher, K.J. y Hayes, A.F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879-891.
- Preacher, K.J., Rucker, D.D. y Hayes, A.F. (2007). Addressing moderated mediation hypotheses: Theory, methods and prescriptions. Multivariate Behavioral Research, 42,185-227.
- Quiles, M.N., Rodríguez, A., Navas, M., Rodríguez, R., Betancor, V. y Coello E. (2006). Variables moderadoras y mediadoras de la relación percepción de diferencias-ansiedad intergrupal. Psicothema, 18, 105-111.
- Quiñones, E., López, J.J., Peñaranda, M. y Tortosa, F. (2004). The nature of social and personality psychology as reflected in JPSP, 1965-2000. Journal of Personality and Social Psychology, 86, 435-452.
- Rose, B. M., Holmbeck, G. N., Coakley, R. M. y Franks, E. A. (2004). Mediator and moderator effects in developmental and behavioral pediatric research. Developmental and Behavioral Pediatrics, 25, 58-67.
- Rosenbaum, P.R. (2002). Observational studies. 2nd Edition. New York, NY: Springer.
- Rubin, D. (2005). Causal inference using potential outcomes: design, modeling, decisions. Journal of the American Statistical Association, 100, 322-331.
- Shadish, W., Cook, T.D. y Campbell, D.T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin Company.
- Shrout, P.E. y Bolger, N. (2002). Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychological Methods, 7, 422-445.
- Sobel, M.E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. Sociological Methodology, 16, 149-186.
- Spencer, S.J., Zanna, M.P. and Fong, G.T. (2005). Establishing a causal chain: why experiments are often more effective than mediational analyses in examining psychological processes. Journal of Personality and Social Psychology, 89, 845-51.
- Stone, C.A. and Sobel, M.E. (1990). The robustness of estimates of total indirect effects in covariance structure models estimates by maximum likelihood. Psychometrika, 55, 337-352.
- Stone-Romero, E.F. y Rosopa, P.J. (2008). The relative validity of inferences about mediation as a function of research design characteristics. Organizational Research Methods, 11, 326-352.
- Tzelgov, J. y Henik, A. (1991). Suppression situations in psychological research: definitions, implications and applications. Psychological Bulletin, 109, 534-536.
- Zhao, X., Lynch, J.G. & Chen, Q. (2010). Reconsidering Baron and Kenny: myths and truths about mediation analysis. Journal of Consumer Research, 37 (august), electronically published February 15, 2010.
- Wu, A.D. y Zumbo, B.D. (2008). Understanding and using mediators and moderators. Social Indicators Research, 87, 367-392.